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ABSTRACT 

 

This dissertation consists of three essays that explore the effects of biofuel and 

environmental policies on relevant industries. The first essay focuses on examining the market 

impacts and welfare consequences of U.S. biofuel policies. The second essay quantifies the U.S. 

agricultural supply response during the biofuel policy period. The third essay focuses on 

understanding the performance of a different kind of market-based policies in reducing industry-

wide emissions. 

The U.S. renewable fuel standard (RFS), initiated in 2005 and extended in 2007, has been 

rationalized as pursuing, for example, reduction of greenhouse gas emission and reduction of the 

U.S. dependence on foreign energy sources. While its effects on food prices and actual 

environmental benefits remain controversial, the first essay constructs a multi-market 

equilibrium model and assesses the current and future economic effects of the RFS. The model 

integrates the U.S. agricultural sector with the energy sector and explicitly considers both U.S. 

ethanol and biodiesel production. The model is parameterized to represent observed 2015 data as 

status quo and then simulated to analyze alternative scenarios. The results confirm that the 

current RFS program considerably benefits the agricultural sector but also leads to overall 

welfare gains for the United States. Implementation of projected 2022 mandates, which would 

require further expansion of biodiesel production, would lead to a considerable welfare loss 

(relative to the status quo). 

While the abovementioned analysis relies on elasticities from the literature, the second 

essay directly quantifies the U.S. corn and soybean dynamic supply response. The RFS has been 

credited with being one of the main causes of (i) the recent global commodity price increases and 
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(ii) the spatial changes in prices by affecting local basis nearby biofuel plants. The presence of 

these two demand-induced price effects provides an ideal opportunity to revisit the econometric 

analysis of the agricultural supply response. By focusing on recent years (2005-2015), therefore, 

the acreage and yield responses are estimated by using county-level panel data for the twelve 

Midwest states. The results indicate that the acreage and yield responses are highly inelastic. 

With relatively significant cross-price acreage elasticities, when corn and soybean prices move 

together, the response of the total acreage of these two key crops is very small. This result 

indicates that the ability of the U.S. corn and soybean production sector to accommodate the 

demand shock caused by the RFS is limited. 

As alternatives to command-and-control-type instruments such as mandates, market-

based policies, such as voluntary agreement (VA) and Pigouvian tax, can be used to deal with 

environmental externalities. Given the increasing use of VAs, the third essay examines the 

performance of VA, relative to a tax policy and laissez faire policy, as a way to reduce 

environmental pollution. We find that when the market is non-competitive, the VA, relative to 

other policy options, improves welfare despite suffering from free-riding behavior. It is also 

found that as consumers value the green good more, the VA increases the number of green firms 

and provides a less competitive environment for free-riders, who increase the price of regular 

goods. As a result, the total market under the VA becomes less covered, at some point, than the 

tax policy. As for implementation, the potential gains from of the VA are attainable provided the 

regulator’s threat is credible and sufficiently strong.  
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 CHAPTER 1   

INTRODUCTION 

 

The theme of this dissertation is to analyze the market and welfare effects of agricultural 

and environmental policies on relevant industries. In the last decade, the U.S. renewable fuel 

standard (RFS), initiated in 2005 and significantly expanded in 2007, has been one of the most 

influential agricultural-and-environmental policies in the world. It basically mandates certain 

amounts of biofuels to be blended into U.S. fossil fuel supply in order to reduce greenhouse gas 

emissions and to reduce the reliance on foreign energy sources. Having agricultural products as 

main feedstocks for biofuels, it affects agricultural commodity, energy commodity, and fuel 

markets. In particular, given that the United States is a large net exporter of agricultural products 

and a large net importer of crude oil, and that the global commodity markets are pretty 

competitive, the impact of the RFS is not limited to domestic markets but inevitably extends to 

foreign markets.  

Given its significant influence and complexity, we analyze the impact of RFS by 

constructing a tractable multi-market competitive equilibrium model suitable to evaluate 

alternative biofuel policies (Chapter 2). The model integrates the U.S. agricultural sector with the 

energy sector and it explicitly considers both U.S. ethanol and biodiesel production. The model 

provides a structural representation of the RFS policies, and it uses the arbitrage conditions 

defining the core value of renewable identification number (RIN) prices to identify the relevant 

competitive equilibrium conditions. The model is parameterized, based on elasticities and 

technical coefficients from the literature, to represent observed 2015 data. The model is 
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simulated to analyze alternative scenarios, including: repeal of the RFS; projected 2022 RFS 

mandates; and, optimal (second best) mandates. 

One of the crucial components for determining the impact of the RFS is the 

responsiveness of U.S. crop commodity supply in regard to relevant price changes. In particular, 

corn and soybeans, for each of which the United States produces more than 30% of world 

consumption, are the main feedstocks under the RFS. Whereas the first essay relies on elasticities 

from the literature, therefore, we directly quantify the U.S. corn and soybean supply response by 

exploiting the large exogenous price variations associated with the implementation of the RFS 

(Chapter 3). To do so, we focus on recent years (2005-2015), when the RFS played a major role, 

and on the twelve Midwestern states that produce most of the nation’s corn and soybeans. 

Acreage and yield responses are modeled separately, where acreage response is modeled as 

function of expected per-acre returns that account for both expected price and expected yield. 

Specifically, we estimate a system of dynamic equations that is consistent with the impact of 

crop rotation on acreage allocation.  

The RFS mainly relies on mandates which are the command-and-control-type policy 

instrument, market-based policies, such as voluntary agreement (VA) and Pigouvian tax, can 

also be used to deal with environmental externalities. Given the globally increasing use of VAs, 

we examine the performance of VAs, relative to a tax policy and laissez faire policy (i.e., no 

policy), as a way to reduce environmental pollution. We consider an oligopolistic market, in 

which consumers care about the environmental friendliness of firms, and construct three-stage 

game model to analyze the incentive of participants and free-riders. After determining equilibria, 

numerical simulations are conducted to check the feasibility of the VA and to compare welfare 

consequences between alternatives.
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CHAPTER 2  

RENEWABLE FUEL STANDARD IN COMPETITIVE EQUILIBRIUM: MARKET AND 
WELFARE EFFECTS 

 

2.1   Introduction 

Over the last decade the United States has implemented major policies to promote biofuel 

use. The key provisions, set forth in the Energy Independence and Security Act (EISA) of 2007, 

are centered on the so-called Renewable Fuel Standard (RFS) which mandates certain amounts 

of renewable fuels to be blended into the US transportation fuel supply. These ambitious RFS 

“mandates” have been rationalized as pursuing a variety of objectives, including reduction of 

GHG emission and reduction of the US dependence on foreign energy sources (Moschini, Cui 

and Lapan 2012). Arguably, however, one of their most important impacts has been on 

agriculture. By sizably expanding demand for some agricultural products (e.g., corn to produce 

ethanol), the RFS is credited with having contributed substantially to increased commodity 

prices (Wright 2014; de Gorter, Drabik and Just 2015). These price increases have benefited 

farmers, and led to large land price increases, but biofuel policies’ impact on land use has led to 

controversies, including the food versus fuel debate (Rosegrant and Msangi 2014) and whether 

biofuels yield actual net environmental benefits (Searchinger et al. 2008). In addition, 

development and production of cellulosic biofuel—one of the RFS’s signature features—has 

severely lagged the mandates schedule set out in EISA. Furthermore, the current economic 

environment of relatively low oil prices, coupled with an unexpectedly strong domestic 

expansion of fossil fuel production, makes the energy security argument somewhat moot. The 

RFS remains controversial, and there is considerable interest in a comprehensive assessment of 

the current and future economic impacts of the RFS (Stock 2015).    
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In this essay we construct a tractable multi-market competitive equilibrium model 

suitable to evaluate alternative biofuel policies. The model, which integrates the US agricultural 

sector with the energy sector, pays particular attention to a careful structural representation of the 

RFS biofuel support policies, and it is amenable to calibration and simulation to produce 

theoretically-consistent estimates of the market and welfare impacts of these policies. Unlike 

previous analyses that focused exclusively on ethanol (e.g., de Gorter and Just 2009, Cui et al. 

2011), we develop a model that captures all of the various mandates envisioned by the RFS 

(Schnepf and Yacobucci 2013). These mandates are enforced by the US Environmental 

Protection Agency (EPA) via Renewable Identification Numbers (RINs), which are tradeable. A 

novel contribution of this essay is to show how the arbitrage conditions for RIN prices derived 

from the behavior of distributors that blend biofuels with fossil fuels, including the RIN price 

inequalities implied by the hierarchical structure of the RFS mandates, can be embedded in a 

competitive equilibrium model. 

One of the fault lines of the current RFS implementation is the rising role of biodiesel 

(Irwin and Good 2016). Insofar as biodiesel may be the biofuel of choice to meet the advanced 

biofuel portion of the RFS mandates, as suggested by recent EPA rulemakings (EPA 2016), an 

economic evaluation of current and prospective US biofuel policies needs to consider the 

interactions between US ethanol and biodiesel production. The model we present captures this 

essential connection by an explicit system representation of the feedstock used in biofuel 

production. For conventional ethanol produced in the United States, corn is the chosen feedstock 

in virtually all plants. Biodiesel production, on the other hand, uses a variety of feedstocks, 

including animal fats, recycled fats (yellow grease) and vegetable oils. The latter are the most 

important primary input, accounting for about 71% of biodiesel feedstock in 2015, with soybean 
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oil being the most widely used (almost three fourths of all vegetable oils used in biodiesel 

production). Given the constraints on the availability of other more marginal feedstocks (Brorsen 

2015), we assume that further expansions of biodiesel production would have to rely on 

redirecting vegetable oils from other uses. In this essay, therefore, we develop a structural model 

of ethanol production from corn and biodiesel production from soybean oil.1 The model captures 

the competition of primary agricultural products for scarce land, can trace the impact of biofuel 

mandates on equilibrium prices at various market levels, and can produce a coherent welfare 

assessment of the overall impact of RFS mandates.  

The topic of this essay is of considerable importance from a policy perspective. Biofuel 

policies, and the future of the RFS mandates, while likely to remain controversial, have a crucial 

impact on the agricultural sector (Cui et al. 2011, Pouliot and Babcock 2016). We find that the 

RFS has indeed proved to be a remarkably effective tool for farm support. Relative to the 

scenario of no biofuel policies, the 2015 level of mandates entails a 38% increase in corn price 

and an 11% increase in soybean price. The mandates’ impact on energy prices is smaller in 

absolute terms, with crude oil price decreased by 1.4%. Because the United States is a net 

importer of crude oil, and a net exporter of corn and soybean products, these terms of trade 

effects contribute significantly to the finding that, overall, the welfare impact of the RFS has 

been positive. The RFS impact on reducing carbon emission, on the other hand, turns out to be 

nil once we account for the leakage effect (due to the induced increase in the rest of the world’s 

fossil fuel consumption). Aggregate welfare at current mandate levels is larger than in the “No 

RFS” scenario by about $3.4 billion. To further improve welfare from the 2015 mandate levels, 

                                                 
1 To keep the analysis tractable we avoid the structural representation of other vegetable oil industries. Insofar as 
soybean oil is a close substitute for other vegetable oils that can also serve as feedstock for biodiesel production, this 
simplification would seem to entail little loss of generality. 
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the model suggests that corn ethanol production should be increased, whereas biodiesel 

production should be decreased. The additional welfare gains from such constrained optimal 

mandates, however, are somewhat limited. Finally, implementation of the 2022 RFS statutory 

mandate levels—adjusted for a projected realistic expansion of cellulosic biofuels, consistent 

with EPA’s recent waivers—would lead to sizeable welfare losses.  

 

2.2   The RFS: Current and Prospective Mandates 

The biofuel mandates of the RFS codified by EISA considerably extended the earlier 

provisions of the 2005 Energy Policy Act (Schnepf and Yacobucci, 2013). This legislation laid 

out a hierarchical set of quantitative minimum requirements for different types of biofuels, as 

well as a schedule for these mandates to increase over time, with final mandate levels being 

reached in 2022. The RFS defines an overall “renewable fuel” mandate, to be met with 

qualifying biofuels that achieve at least a 20% reduction in greenhouse gas (GHG) emissions 

(relative to fossil fuel), on a lifecycle basis. Furthermore, the RFS specifies a number of nested 

mandates as subsets of the overall renewable fuel mandate. The largest sub-component is that of 

“advanced biofuels.” Such biofuels must achieve at least a 50% GHG emission reduction 

(relative to the conventional fuel) and encompass a variety of biofuels, including sugarcane 

ethanol and biodiesel (but corn-based ethanol is excluded). A portion of the advanced biofuel 

mandate is explicitly reserved for biomass-based diesel (biodiesel for short). The largest portion 

of the advanced biofuel mandate was supposed to be accounted for by cellulosic biofuels, 

identified as reaching a GHG emission reduction of at least 60% relative to the conventional fuel. 

The EPA is responsible for implementing the RFS. To do so, prior to each year the EPA 

determines the fractional requirements that “obligated parties” (e.g., importers and refiners of 
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fossil fuels) have to meet. These fractional requirements are calculated so that the mandates 

volumes of biofuel are achieved, given expected demand conditions. The fractional requirements 

determine the individual parties’ renewable volume obligations (RVOs), given their sales of 

transportation fossil fuel. As noted earlier, these RVOs are enforced via the RIN system.2 In 

addition to setting appropriate fractional requirements each year to implement the scheduled RFS 

mandates, the EPA has had to contend with the essential failure of cellulosic biofuel production: 

technology and production capacity are nowhere close to permit the fulfillment of the ambitious 

mandates envisioned by EISA. Hence, in the last several years, the EPA has exercised its waiver 

authority and drastically reduced the statutory RFS mandates accordingly.  

Table 2.1 reports RFS mandate levels for the years 2015-2017, and for year 2022 (when 

biofuel mandates are supposed to reach their final levels). The columns labeled “EISA” contains 

the statutory mandates, for the overall renewable fuel and its subcomponents: advanced biofuel, 

biodiesel and cellulosic biofuel. It is useful to supplement these statutory mandates, reported in 

the first four rows of Table 2.1, with two additional “implied” mandates. Note that there is no 

explicit mandate for corn-based ethanol. But given that this biofuel is the most cost-effective, at 

present, the implicit mandate for corn-based ethanol can be obtained as the difference between 

the renewable fuel mandate and the advanced biofuel mandate. This is reported in the last row of 

Table 2.1, which shows that corn-based ethanol is effectively capped by EISA to a maximum of 

15 billion gallons (from 2015 onward). Also, a portion of the advanced biofuel mandate, not 

reserved for cellulosic biofuels, can be met by a variety of biofuels (including sugarcane ethanol 

                                                 
2 RINs are identifiers assigned to biofuel batches at production. They are “separated” from the physical product 
when the biofuel is blended with fossil transportation fuel. Such separated RINs can then be used by obligated 
parties to show compliance. Obligated parties can meet the RIN requirements by buying a sufficient amount of 
biofuel themselves or, alternatively, by buying separated RINs from other parties (McPhail, Westcott and Lutman, 
2011). 
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and biodiesel). This implied “non-cellulosic advanced” biofuel mandate, computed as the 

difference between advanced biofuel mandates and cellulosic biofuel mandate, is reported in the 

second-last row of Table 2.1.  

The columns labeled “EPA” reflect the agency’s exercise of its waiver authority. It seems 

clear that the EPA has been systematically and drastically reducing the cellulosic biofuel 

mandate to levels that are feasible given current capacity, and simultaneously scaling back the 

overall renewable fuel mandate. At the same time, EPA rulemaking shows a clear intention to 

abide by the statutory mandates for the other components of the RFS. Also, the EPA is clearly 

signaling that biodiesel provides the avenue for meeting this non-cellulosic advanced biofuel 

mandate. The 2017 biodiesel mandate is almost sufficient to satisfy the other advanced biofuel 

mandates.3 From these observations, we generated a reasonable projection of how the 2022 

statutory mandates may be adjusted, and this is reported in the last column of Table 2.1. This 

projection assumes that: (i) the non-cellulosic portion of the advanced biofuel mandate (5 billion 

gallons) will be fully implemented; (ii) the cellulosic biofuel mandate will continue to be scaled 

down based on available capacity (our projection relies on a linear trend of past EPA 

rulemakings); and, (iii) the overall renewable fuel mandate will be set so that, given (i) and (ii), 

the implied corn-ethanol mandate is held at the 15 billion gallons cap. As for biodiesel, our 

working assumption is that this is the marginal biofuel to meet the advanced biofuel mandate, 

and so the extrapolation as to its level is not required for the model that we discuss next (the 

biodiesel mandate, per se, is not binding).4 The last column of Table 2.1 constitutes the “2022 

                                                 
3 Although the biodiesel mandate is defined in physical volume, when biodiesel is used to meet the advanced biofuel 
standard, or the overall renewable fuel standard, each gallon is multiplied by an “equivalence value” (either 1.5 or 
1.7) (Schnepf and Yacobucci 2013).  

4 Lade, Lin Lawell and Smith (2016) also find that biodiesel served as the marginal biofuel for RFS compliance in 
2013. Irwin and Good (2016) derive mandate projections to 2022 very similar to ours.  
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scenario” that is analyzed in our counterfactual simulations, along with a few other scenarios 

discussed below.  

 

2.3   The Model 

The model consists of the following parts: US supply for corn and soybean, consistent 

with equilibrium conditions in the land market; US oil supply; transformation sectors that 

produce ethanol and biodiesel from agricultural crops, and gasoline and diesel from domestic and 

imported crude oil; imports of crude oil and exports of corn and soybeans (including soybean oil 

and meal); rest of the world’s demands for corn and soybean products imports; US demand for 

food products, transportation fuels and other fuels. The model allows for the endogeneity of 

crude oil, corn and soybean product prices, in addition to representing equilibrium in the US 

markets for food products and transportations fuels. The equilibrium conditions used to close the 

model are based on a novel representation of the arbitrage conditions for RIN prices.  

 

2.3.1   Domestic production 

The model represents three domestically produced primary products: corn, soybeans, and 

crude oil. Concerning the two agricultural outputs, we conceive of their production as arising 

from an equilibrium allocation of (finite) land across three alternatives: corn, soybean, and all 

other uses. Given the purpose of this analysis, in our model it is important to represent not just 

the responsiveness of the supply of each product of interest to changes in its own price, but also 

the substitutability between corn and soybean, i.e., the cross-price effects. Consistent with recent 

work addressing agricultural supply response to price changes induced by the biofuel expansion 



www.manaraa.com

10 

 
 

(e.g., Hendricks et al. 2014, Berry 2011), we postulate both a land allocation response and a yield 

response. Consequently, the supply functions for corn and soybeans are represented as:  

(1) ( , ) ( ) ( , )i i j i i i i jS p p y p L p p ,   , ,i j c s  and i j   

where p  denotes prices and the subscripts c and s indicate corn and soybeans, respectively. 

Hence, the yield functions ( )i iy p  are presumed to respond to own price only, whereas the 

acreage allocation functions ( , )i i jL p p  depend on both corn and soybean prices (which are 

endogenously determined in the model). Provided the symmetry condition c s s cS p S p      

holds, the supply functions ( , )c c sS p p  and ( , )s c sS p p  are integrable into an aggregate profit 

function ( , )c sp p  and thus satisfy c cS p    and s sS p   (by Hotelling’s lemma).  

As noted, the acreage functions ( , )i i jL p p  are meant to represent an equilibrium allocation 

of (finite) land to three alternatives, but we specify them as depending only on the prices of corn 

and soybeans. Two rationalizations can be invoked for this procedure: the price of the outside 

option (other uses) is constant; or, these functions should be interpreted as mutatis mutandi 

supply relationships (i.e., allowing for equilibrium response in the markets for products other 

than corn and soybeans). Computation of the producer surplus, as done in this essay, is possible 

for either rationalization, although the interpretation of such measure might differ in subtle ways 

(Thurman 1991). In any case, the price of inputs other than land are held constant (across 

scenarios), except for energy inputs (because the model will solve for different equilibrium fuel 

prices across scenarios). Still, under the ancillary simplifying condition that energy inputs are 

used in fixed proportion with land,5 it follows that the supply functions of interest can in fact be 

                                                 
5 The Appendix provides an explicit justification for this assumption based on Beckman, Borchers and Jones (2013). 
Note that, whereas this simplifies the representation of the relevant equilibrium conditions, we still can account for 
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represented simply as depending on the prices of the two commodities (corn and soybeans). The 

supply of the other domestically produced primary product, crude oil, is written as ( )R RS p . 

 

2.3.1.1   Transformation sectors 

The refining of crude oil yields gasoline gx , diesel dx , and other refined petroleum 

products hx . We assume a Leontief (fixed proportions) production technology: 

(2)  ,g g R gx Min x z  

(3) d d g gx x   

(4) h h g gx x   

where R R Rx S S   is the total supply of crude oil to the US market ( RS  denotes US imports of 

crude oil), and gz  represents other inputs used in the refining process. 

Domestically produced corn has three uses in the model: it can be exported; it can be 

transformed into ethanol; and it can meet domestic demand for all other uses (e.g., animal feed). 

Corn-based ethanol production ex  is represented by the following Leontief production functions: 

(5)  ,e e c ex Min x z   

where cx  is the quantity of corn, and ez  denotes all other inputs, used in ethanol production. We 

note at this juncture that the model will allow for byproducts—such as distilled dried grains with 

soluble—that can be valuable as animal feed (Hoffman and Baker 2011). The endogenously 

determined animal feed products in our model are corn and soybean meal. To account for the 

                                                 
the impact of changing equilibrium energy prices (across scenarios) in the computation of agricultural producer 
surplus.  
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feedback effects on these markets of varying ethanol production (across scenarios), the quantities 

of byproducts which substitute for corn and soybean meal used in livestock feed are represented 

as 1 cx   and 2 cx  , respectively.  

Similarly, domestically produced soybeans have two uses: they can be exported as beans; 

or, they can be crushed to produce oil and meal. In turn, some of the meal and oil that is 

domestically produced by the crushing process is exported. Given the constant returns to scale 

technology in the crushing process, and assuming that there are no particular comparative 

advantages in this process, without loss of generality we can simplify the model and assume that 

each bushel of soybeans that is exported is really a fixed-proportion bundle of soybean oil and 

meal.6 Hence, we presume that the entire domestic production of soybeans is converted into 

soybean oil vx  and meal mx  by the following Leontief technology:  

(6)  ,v v s vx Min S z    

(7) m m v vx x   

where sS  is domestic soybean supply, and vz  denotes other variable inputs used in the 

production of vegetable (soybean) oil. Next, soybean oil can be exported, it can be converted into 

biodiesel, or it can meet domestic demand for all other uses. Conversion of soybean oil into 

biodiesel bx  takes place according to this Leontief technology: 

(8)  ,b b v bx Min x z   

where vx  is quantity of soybean oil, and bz  denotes all other variable inputs, used in the 

production of biodiesel.  

                                                 
6 Sobolevsky, Moschini and Lapan (2005) explain why, given the maintained assumptions, the location of soybean 
processing is undetermined such that the only meaningful trade flows that can be recovered by competitive 
equilibrium pertain to the factor content of trade. 
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2.3.2   Demand 

For the analysis of various scenarios, the model endogenizes both agricultural product 

prices and fuel prices. We explicitly model the demand for transportation fuels (gasoline and 

diesel), as well as the demand for other energy products produced by refining crude oil. Because 

transportation fuels in our model blend fossil and renewable fuels, it is important to account for 

their energy content. Our maintained assumption is that consumers ultimately care about miles 

traveled (de Gorter and Just 2010). Having accounted for their different energy contents, ethanol 

is considered a perfect substitute for gasoline and biodiesel a perfect substitute for diesel. To 

permit an internally consistent welfare evaluation of alternative policy scenarios, domestic 

demand functions are obtained from a quasi-linear utility function for the representative 

consumer, which is written as:  

(9) ( , ) ( ) ( , , ) ( )gf df h c m vU I p p p p p p E           

where I  denotes monetary income which, along with all prices, is expressed in terms of a 

numeraire good whose price is normalized to one. Subscripts gf and df  here denote gasoline fuel 

and diesel fuels, respectively (i.e., blends of fossil and renewable fuels). Thus, we are postulating 

additive separability between transportation fuels, heating oil, and food/feed products. This 

property assumes that a number of cross-price elasticities are equal to zero. But some critical 

substitution relations (between food/feed products, and between various fuels) are modeled 

explicitly. Note also that these preferences include the externality cost of transportation fuel 

consumption via the term ( )E , where E  denotes total world GHG emissions associated with 

the consumption vector of all energy products (accounting for the fact that biorenewable energy 

products entail savings on emission).  
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The foregoing approach of modeling biofuels and fossil fuels as perfect substitutes, once 

expressed in equivalent energy units, is consistent with other recent studies (e.g., Holland et al. 

2015), but some additional discussion may be warranted vis-à-vis the “blend wall” issue. The 

latter refers to the maximum amount of ethanol that can be sold via the so-called E10 gasoline 

blend (which contains a maximum of 10% ethanol). As noted by Stock (2015, p. 13) “…this is 

more accurately not a ‘wall’ but rather a situation in which additional ethanol must be provided 

through higher blends.” When that is the case, it may be important to represent separately 

consumers’ demand for E10 and E85, the higher-ethanol blend that can be used by flexible fuel 

vehicles (FFVs) (Anderson 2012, Salvo and Huse 2013). As discussed in more detail below, 

feasibility of the RFS mandate is not an issue in the benchmark 2015 year, nor for the 2022 

scenario. Feasibility may be an issue for the higher ethanol levels of the optimal mandates that 

we calculate, in which case the putative welfare gains of optimal mandates need to be properly 

qualified. 

Demand functions for corn, soybean oil and soybean meal are written as ( , , )c c m vD p p p , 

( , , )v c m vD p p p , and ( , , )m c m vD p p p , respectively, and satisfy c cD p   , v vD p   and 

m mD p   . Similarly, domestic demand functions for blended gasoline fuel and blended 

diesel fuel, ( , )gf gf dfD p p  and ( , )df gf dfD p p , satisfy gf gfD p    and df dfD p   . Again, 

in principle the specification can handle some substitution possibility between gasoline and 

diesel. Such a possible substitution is however not maintained for non-transportation petroleum 

products, the demand for which is ( )h h hD p p   . The actual parameterization of these 

demand functions will assume a quadratic structure for the functions ( )  , ( )   and ( )  , such 

that the implied demands are linear. Demand functions for agricultural products exported to the 
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rest of the world (ROW), written as ( )c cD p , ( )v vD p  and ( )m mD p , are also assumed to be linear. 

As for the externality cost ( )  , we will assume that the social cost is linear in total carbon 

emission.  

 

2.4   Equilibrium 

The equilibrium conditions represent the situation where the United States is a net 

importer of crude oil, a net exporter of corn, and a net exporter of soybean oil and meal (as noted 

earlier, exports of soybeans per se are treated as exports of soybean oil and meal). These trade 

flows are endogenously determined by the equilibrium conditions that solve for the equilibrium 

prices. To exactly match the data of the benchmark 2015 year, all other trade flows (because they 

are of minor importance) are treated as exogenous. Similarly, our equilibrium conditions reflect 

observed stock changes in the benchmark year, although these quantities are treated as 

exogenous across scenarios.  

It is useful to separate the equilibrium conditions that apply in any one scenario into 

market clearing conditions and arbitrage conditions. The latter arise from the competitive (zero 

profit) conditions that apply to the transformation sectors (oil refining, soybean crushing and 

ethanol production), together with the presumed Leontief production functions. Arbitrage 

conditions also arise because of policy interventions in the biofuel market, as discussed below. 

Unlike Cui et al. (2011), none of our scenarios considers the possibility of using border measures 

(i.e., tariffs). Hence, the arbitrage conditions that link domestic and foreign prices are directly 

maintained in our model. Which market equilibrium conditions apply, however, does depend on 

which policy tools (e.g., mandates, taxes, subsidies) are in place. Here we present the equilibrium 

conditions for the case with binding mandates (the status quo). 
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The statutory mandate levels are: M
rfx  for the overall mandate for renewable fuel, M

ax  for 

the advanced biofuel mandate, M
bx  for the biodiesel mandate, and M

cex  for the cellulosic biofuel 

mandate (following the RFS convention, all of these mandates, except M
bx , are measured in 

ethanol units).7 These mandates define a hierarchical structure: cellulosic biofuels and biodiesel 

can be also used to meet the advanced biofuel mandate; and all biofuels can be used to meet the 

overall renewable fuel mandate (Schnepf and Yacobucci 2013). Consistent with the 2015 

benchmark year used to calibrate the status quo, there are three binding mandates: M
rfx , M

ax  and 

M
cex . Specifically, the binding cellulosic biofuel mandate is met with domestic production, which 

is exogenous to our model. The advanced biofuel mandate is met by imports of sugarcane 

ethanol, the quantity of which is exogenous, and biodiesel, either domestically produced or 

imported (domestic biodiesel produced from feedstock other than vegetable oil, and the imported 

amount of biodiesel, are treated as exogenous). More specifically, the equilibrium conditions that 

we characterize below pertain to the case where the quantity of biodiesel exceeds that required to 

meet the biodiesel mandate, i.e., the “marginal” fuel to meet the advanced biofuel mandate is 

biodiesel. Hence, the biodiesel mandate, per se, is not binding. Finally, the presumption is that 

the marginal biofuel for the total renewable mandate is corn ethanol (recall that there is no 

specific corn ethanol mandate per se).  

  

                                                 
7 In the RFS regulation, these fuels are denoted as D6, D5, D4 and D3, respectively. 
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The market clearing conditions can now be stated as follows: 

(10)   1, ( , , ) ( ) (1 ) e
c c s c c c m v c c

e

x
S p p D p p p D p 


         

(11)    2, ( , , ) ( ) e
m s c s s m m c m v m m

e

x
S p p D p p p D p 


          

(12)   , ( , , ) ( ) b
v s c s s v v c m v v v

b

x
S p p D p p p D p


         

(13)   ( , )M
g g e e e ce ce se gf gf dfx X x X x M D p p          

(14)   ( , )d d b b b b df gf dfx X x M N D p p            

(15) ( )h h h hx X D p          

Equation (10) represents equilibrium in the corn market. The term c  here represents 

change in year-ending (carryover) stocks. The last term on the right-hand-side (RHS) of equation 

(10) represents the net amount of corn devoted to the production of ethanol, where the coefficient 

1(1 )  accounts for the quantity of byproducts from ethanol production that substitute for corn 

as livestock feed. Equation (11) represents equilibrium in the soybean meal market. In this 

equation, the terms s  and m  represent variations in stocks for soybeans and soybean meal, 

respectively, whereas the term 2 e ex   accounts for the quantity of ethanol production 

byproducts that substitute for soybean meal as animal feed. Equation (12) represents equilibrium 

in the soybean oil market. In this equation, the term v  represents change in stocks of soybean 

oil. The last term on the RHS of equation (12) represents the amount of soybean oil that is 

processed into biodiesel. Equation (13) represents equilibrium in the gasoline fuel market, where 

gX  denotes exports of unblended gasoline. Note that ethanol from all origins—domestically 

produced corn-based ethanol ex , net of export eX  and imports of sugarcane ethanol seM , as 

well as domestically produced cellulosic ethanol—is blended with gasoline, with everything 
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expressed in gasoline energy equivalent units via the coefficient e . Because only a very small 

portion of the cellulosic biofuel mandate is met with cellulosic ethanol, however, only the latter 

amount (denoted M
ce cex ) is presumed blended with transportation fuel.8 Equation (14) represents 

equilibrium in the diesel fuel market. Here dX  represents exports of refined diesel, bM  

represents imports of biodiesel and bN  represents biodiesel domestically produced with 

feedstock other than vegetable oil. Finally, equation (15) represents equilibrium in the market for 

heating oil (the composite third product of refining crude oil).  

The quantity of corn ethanol and biodiesel in these market clearing conditions must be 

consistent with the binding mandates, that is, the following identities will hold at the equilibrium:  

(16) M M
e rf a ex x x X    

(17)  M M
b a ce se b bx x x M M N          

where   is the coefficient that, as per the RFS regulation, converts biodiesel quantities into 

ethanol units ( 1.5   for traditional biodiesel). The quantities of petroleum products in these 

market clearing conditions, on the other hand, must satisfy the postulated production 

relationships, where the total supply of crude oil to the US refining sector depends on the oil 

price: 

(18)    g g R R R Rx S p S p     

(19)    d d R R R Rx S p S p     

(20)    h h R R R Rx S p S p     

                                                 
8 Most of the current production of cellulosic biofuel takes the form of compressed natural gas and liquefied natural 

gas derived from biogas (EPA 2016). Note, however, that the full mandate M
cex  is relevant for the purpose of 

refiners/blenders’ cost of compliance with the RFS, as discussed below. 
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In equilibrium, prices must also satisfy arbitrage relations that reflect the zero-profit 

conditions implied by competitive equilibrium in constant-returns to scale industries. 

Specifically: 

(21) v v m m s vp p p w       

(22)  2 11e e m c ep p p w          

(23) b b v bp p w       

(24) g g d d h h R gp p p p w        

Equation (21) represents the zero profit in soybean crushing (the value of all outputs 

equal the cost of all inputs). Similarly, equations (22), (23) and (24) represent the zero profit 

conditions in ethanol production, bio-diesel production and crude oil refining, respectively.   

Finally, to close the model, the prices of blended fuels gfp  and dfp  need to be linked to 

the prices of endogenous fossil fuel inputs (gasoline and diesel) and the prices of endogenous 

renewable fuels (ethanol and biodiesel). These relationships need to reflect the fact that gasoline 

and diesel blends are subject to federal and state motor fuel taxes (represented by the per-unit 

terms gft  and dft ), and that biodiesel enjoys a per-unit blending subsidy b . More importantly, 

these arbitrage relationships must reflect the cost that obligated parties (refiners and blenders) 

face for complying with the binding mandates, which are mediated by RIN prices.  

 

2.4.1. RIN prices and arbitrage/zero profit conditions 

Our model is specified in terms of absolute mandate quantities, consistent with the RFS 

statutory requirements laid out in the EISA legislation. As noted earlier, however, the 

implementation of these RFS mandates takes the form of “fractional requirements” (determined 
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annually by the EPA) imposed on obligated parties (e.g., importers and refiners). These 

fractional requirements define how much of each renewable fuel must be blended in the fuel 

supply for each gallon of refined fossil fuel that is marketed. Obligated parties can meet their 

RVOs by purchasing renewable fuel themselves, or can show that others have done so by 

purchasing RINs. In fact, because obligated parties are typically not those who produce and/or 

blend biofuels in the fuel supply, an active market for RINs has emerged, and the associated RIN 

prices data can prove useful for empirical analyses (Knittel, Meiselman and Stock 2015, Lade, 

Lin Lawell and Smith 2016). The purpose of this section is to show explicitly that this, somewhat 

intricate, RFS enforcement mechanism can be fully rationalized in the context of a model, such 

as ours, that is specified in terms of absolute mandates.  

Let rfR , aR , bR  and ceR  denote the RIN prices for generic renewable fuel (e.g., corn-

based ethanol), advanced biofuel, biodiesel and cellulosic biofuel, respectively. The nested 

nature of the RFS mandates imply that ce a rfR R R  , and also that b a rfR R R  . Our working 

assumption that soybean-oil-based biodiesel is the marginal fuel for the purpose of meeting the 

advanced biofuel mandate implies that the RIN price of advanced biofuels is equal to that of 

biodiesel, a bR R . Furthermore, the presumption that the marginal biofuel for the total 

renewable mandate is corn ethanol means that rfR  is effectively the RIN price for corn-based 

ethanol. Next, let the fractional requirements that obligated parties are required to meet for total 

renewable fuel, advanced biofuel and cellulosic biofuel be represented, respectively, by rfs , as  

and ces . Then, given the foregoing assumptions on the marginal fuels, it follows that the implicit 

RFS requirement for corn-based ethanol is ˆe rf as s s  , and the implicit RFS standard for 

biodiesel ˆb a ces s s  .  
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To close the model using the arbitrage conditions from RIN prices, we interpret the latter 

as representing what has been termed as the “core value” of RINs (McPhail, Westcott and 

Lutman 2011). In particular, we abstract from the fact that obligated parties can borrow RINs 

from the next year and/or they can save RINs to be used next year (Lade, Lin Lawell and Smith 

2016). These core RIN prices are derived as follows. Given that consumer demand is represented 

in energy units, a blender can choose to sell one unit of pure ethanol as gasoline fuel and earn 

e gfp , upon incurring the motor fuel tax cost gft . Because the RFS envisions obligations only 

when using fossil fuels, this strategy does not require the seller to turn in RINs. Hence, the 

blender would be free to sell the RIN that is “separated” when the unit of ethanol is sold as fuel. 

The minimum price this agent would accept, at given prices, for one generic renewable fuel RIN 

therefore is: 

(25) rf e gf e gfR p t p    

Analogously, a blender selling one unit of biodiesel can earn b dfp  upon incurring the 

motor fuel tax cost dft . This strategy would separate   RINs. The minimum price this agent 

would accept, at given prices, for one biodiesel RIN therefore is: 

(26) 
b b df b df

b

p t p
R




  



 

To make the foregoing operational for the purpose of closing the model, next we consider 

the demand side for RINs. The zero profit conditions for an obligated party who sells only fossil-

based gasoline and/or diesel, and buys all needed RINs, are: 

(27) ˆ ˆgf g gf e rf b b ce cep p t s R s R s R      

(28) ˆ ˆdf d df e rf b b ce cep p t s R s R s R        
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These two conditions can be combined to provide the zero-profit condition that must 

apply to the overall refining/blending industry which, as in Lapan and Moschini (2012), is 

assumed to be competitive and operating under constant returns to scale. To this end, we need to 

express the RFS fractional requirements is  in terms of mandated quantities. Assuming binding 

mandates M
rfx , M

cex  and M
ax , and exogenously given trade flows (recall: fossil fuel exports are not 

subject to the fractional RFS requirement), then  

(29) 
( )

M
ce

ce
g d g d

x
s

x x X X


  
 

(30) ˆ
( )

M M
rf a

e
g d g d

x x
s

x x X X




  
 

(31) ˆ
( )

M M
a ce

b
g d g d

x x
s

x x X X




  
 

Using equations (25)-(31), the zero-profit condition for the integrated refining-blending 

industry can then be written as: 

(32)     
 

( )( ) ( )( ) ( )( )

( )( )

gf gf g g g df df d d d e gf e gf e e

se M
b b df b df b b b b b df b df ce ce

p t p x X p t p x X p t p x X

M
p t p x M N p t p x R



 


          

           
  

The two terms on the LHS of equation (32) can be interpreted as the industry profit from selling 

fossil gasoline and fossil diesel, respectively. This profit balances the net industry cost of having 

to meet the (binding) mandates. Specifically, the first term on the RHS of (32) represents the net 

loss from selling ( )e ex X  units of corn-based ethanol; note that the motor fuel tax is levied on 

the volume of ethanol sold, whereas the revenue portion adjusts the price of (blended) gasoline 

fuel by the energy content of ethanol. The second term on the RHS represents the net loss from 

selling ( )b b bx M N   units of biodiesel; in addition to the role of the motor fuel tax and energy 
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content, similar to the case of corn-based ethanol, this term also accounts for the biodiesel 

blending subsidy. The third term on the RHS represents the cost of marketing the (exogenous 

amount of) sugarcane ethanol seM . Because this ethanol contributes to meeting the advanced 

biofuel mandate, and because the marginal fuel for meeting this mandate is biodiesel, then the 

implicit compliance costs associated with sugarcane ethanol is given by the core value of 

biodiesel RINs. Finally, the last term of the RHS represents the cost of complying with the 

cellulosic biofuel mandate (both the quantity mandate M
cex  and the corresponding RIN price ceR  

are exogenous to the model).  

Because the model endogenously determines two renewable fuel prices—corn ethanol 

and biodiesel—the zero-profit condition for the integrated refining-blending industry in equation 

(32) is not sufficient to close the model (unlike in Cui et al. 2011, for instance). The additional 

price arbitrage condition is derived by combining equations (27) and (28): 

(33) gf g gf df d dfp p t p p t      

This equailibrium price relation embeds a critical implication of the RFS: marketing a 

gallon of fossil gasoline entails the same compliance cost as marketing a gallon of fossil diesel 

(i.e., the RHS terms of (27) and (28) are the same). In conclusion, therefore, the equilibrium 

conditions are given by equations (10)-(24), along with equations (32) and (33). These 17 

equations are solved for 17 endogenous variables: cp , sp , mp , vp , Rp , gfp , dfp , gp , dp , hp , ep , 

bp , ex , bx , gx , dx  and hx .  
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2.4.2. Equilibrium conditions for other scenarios 

Equilibrium conditions for scenarios other than the status quo will need to be 

appropriately adjusted. For example, without binding mandates and with no biodiesel subsidy, 

the equilibrium conditions would not require the arbitrage relations (32) and (33). Instead, the 

required arbitrage relations (for an interior solution) would be  

(34) g gf gfp p t   

(35) d df dfp p t        

(36) e e gf gfp p t      

(37) b b df dfp p t   

The set of equilibrium conditions for this case would then be given by equations (10)-

(15), equations (18)-(24), and equations (34)-(37). These conditions also characterize the laissez 

faire scenario, provided that 0gf dft t  . The Appendix shows how the equilibrium conditions 

for the case of no RFS mandates can be adjusted to maintain the assumption that some ethanol is 

likely to be required, even without RFS mandates, as an oxygenate for gasoline fuel to meet 

desired octane levels (a scenario that we explicitly consider in the policy evaluation section). 

 

2.5   Parameterization 

The parameters of the model are calibrated to represent the most recent available 

consistent benchmark data set (the year 2015), in order to capture current conditions in 

agricultural and energy markets. Specifically, the data for crop variables are based on the 

2014/2015 marketing year, whereas crude oil and fuel variables (fossil and renewable) are based 
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on calendar year 2015.9 The purpose of calibration is to choose parameter values for the 

functional forms of demand and supply so that: (a) the equilibrium conditions using the 

parameterized functions, along with the observed values of exogenous variables, produce the 

values of endogenous variables actually observed in the 2015 benchmark year; and, (b) the 

parameterized functions imply elasticity formulae that, once evaluated at the 2015 benchmark 

data, match assumed elasticity values. The functions that we parameterize are the domestic 

supply functions for corn and soybeans; the domestic demand functions for corn, soybean meal 

and soybean oil; the foreign import demand functions for corn, soybean meal and soybean oil; 

the domestic supply and foreign export supply functions for crude oil; the domestic demand 

functions for gasoline fuel and diesel fuel; and, the domestic demand function for other refined 

petroleum products. All of these functions are postulated to be linear.  

Table 2.2 reports the assumed elasticity parameters used to calibrate the model, along 

with a brief description of sources/explanations. The remaining coefficients used to calibrate the 

model are reported in the Appendix.  

 

2.5.1   Elasticities 

The elasticity values used to calibrate the model, summarized in Table 2.2, are based on 

the literature, whenever possible, or assumed to reflect consensus on their qualitative attributes. 

A full discussion of sources and elasticity derivations is included in the Appendix. A crucial set 

of parameters, given the objective of the study, concerns the own and cross-price supply 

elasticities for corn and soybeans. Given the postulated structure discussed earlier, such 

                                                 
9 The marketing year runs September to August for corn and soybeans, and October to September for soybean meal 
and soybean oil. 
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elasticities reflect both acreage allocation decisions as well as yield response effects: 

yL
ii ii ii     ( ,i c s ) and L

ij ij   ( ,i c s , i j ). For acreage elasticities we use the estimates 

obtained by Hendricks et al. (2014), which are consistent with previous literature that has 

highlighted inelastic response. As for yield elasticities, Berry (2011) provides an extensive 

review of existing empirical evidence. The broad consensus is that virtually all of the crop supply 

response comes from acreage response, not from yield response. Here we use a set of point 

estimates for yield response to price from Berry and Schlenker (2011). 

The own-price elasticity of domestic corn demand is the same as used by de Gorter and 

Just (2009) and Cui et al. (2011), and similar values are assumed for soybean oil and meal 

demands. Cross-price demand elasticities are calculated based on these own-price elasticities and 

one additional parameter that restrict all of the Allen-Uzawa elasticities of substitution to be the 

same. Import elasticities for the rest of the world (ROW) notionally reflect both ROW demand 

and supply responses. To keep the model tractable, we do not explicitly model such underlying 

functions, nor do we represent cross-price effects. But in the Appendix we develop the structural 

relations between demand and supply elasticities and the import demand elasticity, and use such 

relations to guide the choice of our baseline import elasticity values. For soybean products, our 

baseline elasticities are broadly consistent with those reported by Piggott and Wohlgenant 

(2002), whereas for corn our ROW import demand is more elastic than that postulated by Cui et 

al. (2011).  

Another crucial set of elasticities relates to fuel markets. A considerable body of 

literature, succinctly reviewed in Difiglio (2014) and Greene and Liu (2015), has documented 

that gasoline demand is very inelastic. Indeed, Hughes, Knittel and Sperling (2008) find that it 

has become more inelastic in recent years. We conservatively assume the elasticity of gasoline 
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demand estimated by Bento et al. (2008), who use a microeconomic model that allows 

consumers to respond to price changes with both car choice and miles traveled. This value is also 

close to the estimate obtained, with a completely different methodology, by Coglianese et al. 

(2016), and actually more elastic than other recent estimates (e.g., Lin and Prince 2013). 

Consistent with findings in the literature (Dahl 2012, Winebrake et al. 2015) we postulate that 

the demand for diesel fuel is more inelastic than that for gasoline fuel, while the demand for 

other refined fuel products is specified as relatively more elastic. Similar to demand elasticities, 

the consensus is that the crude oil supply elasticity is very inelastic (Difiglio 2014, Greene and 

Liu 2015). Our baseline parameterization relies on the crude oil supply elasticity used by the US 

EIA National Energy Modeling System (EIA 2014). As for the ROW export supply of crude oil 

to the United States, again this reflects both ROW supply and demand responses. Concerning the 

latter, for the United States our model presumes elasticities of demand for refined products, not 

crude oil. But using the structural (Leontief) production relations between refined products and 

crude oil, and the equilibrium arbitrage relation between prices in (24), the Appendix shows that, 

for the 2015 calibration year, the implied US crude oil demand elasticity is -0.20. If the ROW 

has a similar demand elasticity, and its crude oil supply elasticity is the same as in the United 

States, as assumed in EIA (2014), then we can obtain the ROW export supply elasticity value 

reported in Table 2.2. 

 

2.5.2   Technical coefficients   

The full set of technical coefficients is reported in Table A1 in the Appendix. For ethanol, 

we assume that one bushel of corn yields 2.8 gallons of ethanol, just as in Cui et al. (2011). What 

we do differently in this essay is provide a more careful account of the byproducts from ethanol 
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production. In particular, we recognize that a variety of such byproducts may be produced, and 

that their use as animal feed substitutes for both corn and soybean meal (Mumm et al., 2014). 

This is important in our context, because the quantities and prices of both corn and soybean meal 

are endogenous in the model. Mumm et al. (2014) conclude that byproducts of ethanol 

production return 30.7% (in weight) of the corn used as feed equivalent, with 71% of these 

byproducts replacing corn in animal feed, and the remaining 29% replacing soybean meal. Our 

calibrated parameters 1  and 2  maintain these proportions, while adjusting to the units used 

(bushels for corn and short tons for soybean meal). Production of biodiesel is assumed to require 

7.65 pounds of soybean oil per gallon of biodiesel (EIA), and we ignore the byproducts for this 

process (which have limited value, compared with those arising from ethanol production). The 

Leontief coefficients for the production of soybean oil and meal by crushing soybeans are 

obtained from the actual 2015 data for the soybean complex, which shows that 1,873 million 

bushels of soybeans produced 45.1 million short tons of soybean meal and 21,399 million 

pounds of soybean oil. 

Finally, to represent blended fuels in coherent energy units, for the purpose of modeling 

demand, the British Thermal Unit (BTU) conversion factors of the various fuels are used (EIA). 

By using the coefficients i  thus obtained, we are able to express blended gasoline fuel in 

gasoline energy-equivalent gallon (GEEG) units, as in Cui et al. (2011). By a similar procedure, 

blended diesel fuel is expressed in diesel energy-equivalent gallon (DEEG) units, and other 

refined petroleum products are expressed in kerosene energy-equivalent gallon (KEEG) units. 
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2.5.3   GHG emissions and social cost 

Total GHG emission relevant for assessing the alternative biofuel policies scenarios 

include those associated with US consumption of transportation fuel and other refined petroleum 

products. But, because we are dealing with a global externality, it is important to account for the 

induced change in ROW emission induced by the RFS (the so-called leakage effect). Hence, total 

emission is computed as f j j R Rj
E q E D E  , where jq  denotes the quantity of individual fuel 

types consumed in the United States, jE  denotes the corresponding emission rate, RD  is the 

ROW crude oil consumption, and RE  is the associated emission rate. These (lifecycle) emission 

rates, measured as kg/gallon of carbon dioxide equivalent (CO2e) and reported in Table A2 in 

the Appendix, are taken from EPA (2010) and reflect consensus estimates of GHG emission 

savings provided by biofuels.10 As for GHG emissions rate of other refined petroleum products, 

the coefficient we computed is based on five major products of this category.11  

To translate GHG emission into a social cost, we assume a constant marginal social 

damage of pollution, and thus write ( )E E  . Regarding .  ., the marginal social cost of 

carbon dioxide emissions, the large body of existing work has produced a bewildering array of 

estimates (Tol 2009), a reflection of the conceptual and practical complexities of such an 

endeavor. In addition to the familiar difficulties of choosing the baseline value for this parameter, 

                                                 
10 The relative lifecycle GHG emissions rates for corn-ethanol, sugarcane ethanol, and biodiesel—when fuels are 
measured in energy equivalent units—are 79%, 39% and 43%, respectively, compared to corresponding fossil fuel 
baselines. For cellulosic biofuel, the EPA requires that qualifying products provide at least a 60% emission savings 
relative to fossil fuels, so we conservatively assumed this limit value in calculating the carbon emission coefficient 
in Table A2. 

11 These products—aviation gasoline, kerosene-type jet fuel, propane, kerosene and residual fuel oil—account for 
52%, by weight, of all other refined petroleum products. Owing to the assumed Leontief technology, the assumed 
emission rates for refined products can alternatively be expressed per units of crude oil consumption, and this rate is 
used to compute GHG changes in the ROW. 
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we also need to address the question of what we intend to measure. Our model is predicated on a 

US-centered welfare criterion. For internal consistency, therefore, our model suggests that only 

the carbon-emission implications of US biofuel policies for the US economy are relevant. Hence, 

we follow Cui et al. (2011), who rationalize the use of a benchmark global social cost of 

$80/tCO2, based on the Stern Review (Stern 2007), and then apportion this cost based on the 

share of US share of the world economy to obtain the adopted value of   $20/tCO2.12   

 

2.5.4   Other baseline variables 

Data on prices and quantities used to calibrate the model are reported in the Appendix, 

which includes sources and calculation methods. Many of these values are also reported in the 

status quo column of Table 2.3 below (given that parameters were correctly calibrated, 

simulation of the status quo reproduces the benchmark variables). For most variables, the data 

pertains to observed representative values for the benchmark (2015) year, but for some variables 

the benchmark values are calculated to be consistent with the model. These include gasoline fuel 

and diesel fuel prices, of course. Also, the reported values for the net export of soybean meal and 

soybean oil are the sum of actual net exports and implied net exports from the export of soybeans 

(as discussed earlier). The price of biodiesel is also calculated. It turns out that a representative 

biodiesel price, such as that reported by the USDA,13 would imply an unreasonably low “core 

value” for the corresponding RIN price, if one assumed that the biodiesel blending subsidy was 

                                                 
12 The US government’s estimate for the 2015 social cost of carbon (in 2007 dollars) ranges from $11/ton of CO2 
(when using a 5% discount rate) to $57/ton of CO2 (when using a 2.5% discount rate), with an additional estimate of 
$109/ton of CO2 to represent higher-than-expected impacts of temperature changes (US Government 2013, p. 3). 

13 The average annual biodiesel price for 2015 that we computed from USDA data $2.83/gallon. (National Weekly 
Ag Energy Round-Up, USDA Ag Marketing Service, 
https://usda.mannlib.cornell.edu/usda/ams/LSWAGENERGY.pdf)  
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fully expected, as maintained in equation (26). But in fact this subsidy was passed into law only 

on December 18, 2015, although it retroactively applied to the entire 2015 calendar year. The 

considerable uncertainty surrounding the availability of the biodiesel blending subsidy 

throughout 2015, as well as contractual arrangements that many market operators put in place to 

deal with that (Irwin 2015), suggests that it is unwise to use the observed biodiesel price in the 

context of a model that presumes the certainty of such a subsidy. Therefore, we elected to 

compute the biodiesel price that would be implied by the observed 2015 RIN prices.14  

Other variables of interest reported in the status quo column of Table 2.3 also include 

motor fuel taxes and RIN prices. Concerning motor fuel taxes, we note at this juncture that these 

taxes, in virtually all cases, are levied on volume basis (Schroeder, 2015), a feature that we have 

maintained in our structural model. For gasoline, the assumed per-unit tax is the sum of the 

federal tax (¢18.40/gallon) and a weighted average of state taxes (¢26.49/gallon). For diesel, the 

assumed per-unit tax is the sum of the federal tax (¢24.40/gallon) and a weighted average of state 

taxes (¢27.24/gallon). The RIN price for ethanol is the 2015 average of D6 RIN prices, whereas 

for biodiesel it is the average of the 2015 annual averages of D4 and D5 RIN prices ($0.7475 and 

$0.707, respectively), all from OPIS data.15 

 

 

 

                                                 
14 Computation of this price requires simultaneously solving equations (26), (32) and (33), which also yields the 
blended fuel prices gfp  and dfp  at the calibration point. 

15 The core value for cellulosic biofuel RINs, used to impute the social cost of (exogenous) cellulosic biofuel 
mandates, is estimated at $1.80 per unit (from the average of D6 RIN prices, over the relevant period, as reported in 
“PFL Weekly RIN Recap”). 
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2.6   Market and Welfare Impacts of the RFS: Alternative Scenarios 

The model outlined in the foregoing sections is used to evaluate a number of policy 

scenarios, specifically: 2015 RFS mandate levels (the status quo); implementation of the 2022 

RFS mandates, with projected adjustments for cellulosic biofuels as discussed in section 2.2 

(Table 2.1); and, repeal of biofuel mandate policies (No RFS).16 In addition to evaluating the 

above scenarios, because we have an explicit welfare function, the model permits us to 

characterize optimal biofuel mandates (a second best policy, in this setting), for both biodiesel 

and corn-based ethanol. Finally, for the purpose of benchmarking the welfare implications of 

these policies, we also evaluate the laissez faire scenario (i.e., no biofuel policies and no taxes on 

transportation fuels).  

For each of these five scenarios the model permits computation of market effects (e.g., 

prices and equilibrium quantities), as well as an assessment of the welfare impacts. Because of 

its structure, the model accounts for potential welfare gains accruing to the United States through 

the impact that alternative biofuel policies can have on the US terms of trade for oil, corn and 

soybean products. Our welfare calculations also identify important distributional effects by 

breaking down welfare changes for individual components. We specifically identify net benefits 

accruing to US consumers, measured as consumer surplus from the integrable system of demand 

equations derived from the indirect utility function in equation (9); net benefits accruing to the 

domestic agricultural sector (with aggregate producer surplus consistently calculated as 

discussed in the Appendix); net benefits accruing to domestic producers of crude oil; net 

government tax revenue; and, the monetary value of GHG emission savings. 

                                                 
16 For this scenario, however, we assume that even without biofuel policies a certain amount of ethanol is used by 
blenders as a gasoline oxygenate. This is modeled as a technological minimum requirement, which is set at 3% of 
the blended gasoline fuel. The Appendix provides the equilibrium conditions for the case when this requirement is 
binding.  
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2.6.1   Results  

In Table 2.3 and Table 2.4, results pertaining to the various scenarios are reported by 

column in the following order: laissez faire, no RFS, 2015 mandates, projected 2022 mandates, 

and optimal mandates. The top portion of Table 2.3 reports the value of the active policy 

variables for each scenario. Note that, with the exception of the laissez faire, all scenarios 

envision motor fuel taxes at the baseline level. In addition to the relevant mandates, the status 

quo also includes the $1/gallon biodiesel subsidy (technically, a tax credit). This subsidy is 

omitted from the optimal mandates and 2022 scenarios (this is without loss of generality, 

because the biodiesel mandate is binding in those scenarios). Next, Table 2.3 reports the 

equilibrium prices and quantities for all scenarios that are considered. Whereas Table 2.3 focuses 

on the market impact of policies in the various scenarios, Table 2.4 pertains to the computed 

welfare impacts, which are reported as changes from the “No RFS” scenarios, i.e., the status quo 

before biofuel policies. The estimated aggregate welfare effects are decomposed into several 

subcomponents to describe the distributional impacts of RFS policies (including on domestic 

agricultural producers, domestic crude oil producers, and consumers). The impacts on consumer 

surplus in transportation fuel demand is decomposed into changes accruing via gasoline fuel 

demand and diesel fuel demand (this decomposition is feasible due to the zero substitution 

possibilities between the two fuel demands).  

One of the welfare components in Table 2.4 is the monetary value of the policies’ impact 

on changes in GHG emissions. These emission changes are also reported separately in physical 

units (tCO2e), and decomposed between those occurring in the United States and in the ROW. 

The latter accounts for the implication of “leakage,” which arises when unilateral efforts to 

reduce a global externality are thwarted by induced emission elsewhere (Hoel 1991). One of the 
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two main avenues for carbon leakage to occur is via the impacts of policies on terms of trade 

(Felder and Rutherford 1993). Because the model can trace the impact of the RFS on equilibrium 

crude oil price, we can account for the leakage effect that arises because the ROW oil 

consumption responds to changes in crude oil price.17    

 

2.6.1.1   Status Quo, Status Quo Ante, and Laissez Faire 

Given the calibration strategy described in the foregoing, the values of equilibrium 

variables for the “2015 mandates” column in Table 2.3 are equal to the 2015 values that were 

used in calibration, a verification that the intercepts and coefficients of all demand and supply 

functions are precisely calibrated. The ethanol blending ratio in the calibration data is 9.87%, 

indicating that the blend wall issue is not a concern in the benchmark year.18 The “No RFS” 

scenario, as noted, presumes that all mandates and biodiesel subsidies are repealed. Comparison 

of this scenario with the “2015 mandates” case provides some insight as to the overall market 

impacts of the current RFS. The largest impact is on agricultural prices: relative to the status quo 

ante the RFS increase corn price by 38% and the soybean price by 11%. All this notwithstanding 

the fact that the oxygenate requirement for ethanol (which turns out to bind) entails the use of 4.1 

billion gallons of ethanol in the “No RFS” scenario. Because biodiesel biases demand of soybean 

                                                 
17 The elasticity of the ROW crude oil demand used to estimate the leakage effect is 0.2R   . As detailed in the 

Appendix, this is the demand elasticity that is implied by the model’s assumed elasticities for refined petroleum 
products’ demands. This value was also used to rationalize the ROW crude oil export supply elasticity used in the 
model.  

18 As noted earlier, ethanol blend ratios in excess of 10% would require some biofuel to be sold in higher-ethanol 
blends such as E85 suitable for FFVs. In a recent intercept survey carried out in five US states, Liao, Pouliot and 
Babcock (2016) find that about 50% of FFV motorists use E85. At present, approximately 8.3% of the US fleet of 
gasoline-powered cars and light trucks is accounted for by FFVs (EIA 2016). Because E85 on average contains 74% 
ethanol, if half of FFV were to be accounted for by this blend, the ethanol “saturation point” would be about 12.2% 
—provided, of course, that FFV motorists were not constrained by the availability of refueling stations. Liao, 
Pouliot and Babcock (2016) also find that E85 is sold at a premium relative to E10 (on an energy equivalent basis), 
so that a higher saturation point could actually be supported if E85 were to be priced more aggressively. 
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products, the RFS increases soybean oil price by 49% whereas soybean meal price actually 

declines (by 2%). Not surprisingly, the RSF impact on crude oil price (and refined products 

prices) is much smaller: the crude oil price is estimated to decline by 1.4%, the gasoline price to 

decline by 9.5% (the price of diesel and that of other refined petroleum products instead 

increases—reduced amount of refined crude oil, along with the Leontief technology, result in a 

relative scarcity of these refined products). The RFS leads to a modest contraction in domestic 

crude oil production, and a larger decline in imports of crude oil (which drop by about 6%). 

The laissez faire scenario, in addition to the repeal of the RFS, also envisions dropping 

all motor fuel taxes. This is not a scenario with realistic policy prospects, of course, but it is of 

some interest to gain insights into the working of the model. Interestingly, the production of 

corn-based ethanol in the laissez faire is considerably higher than in the “No RFS” scenario (the 

3% oxygenate requirement is not binding in laissez faire). Correspondingly, the corn price is also 

considerably higher in the laissez faire relative to the “No RFS” scenario. The reason for this 

effect has to do with the impact of transportation fuel taxes. Consistent with the institutional 

setup, we have modeled these motor fuel taxes as levied on a volume basis (Schroeder, 2015). 

And, under the presumption that consumers care about miles traveled, fuel demand accounts for 

the different energy content of biofuels. Hence, as noted by Cui et al. (2011), motor fuel taxes 

are inherently biased against fuels (such as biofuels) that have lower energy content than fossil 

fuels. Conditional on such motor fuel taxes being levied per unit of volume of blended fuel, a 

subsidy for ethanol (and biodiesel) would actually be required just to level the playing field (vis-

à-vis the objectives of a Pigouvian tax). 

Turning to the welfare impacts reported in Table 2.4, comparing the 2015 mandates case 

with the “No RFS” scenario we find that aggregate welfare is improved by biofuel policies, by 
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$3.4 billion. In the logic of the model, there are two distinct reasons why RFS policies may 

improve welfare: they can help correct the carbon pollution externality (under the maintained 

presumption that biofuels are less polluting than fossil fuels); and, because the United States is a 

large country, they may lead to favorable changes in the US terms of trade. It is immediately 

apparent from Table 2.4 that no portion of the welfare gain associated with 2015 mandates 

(relative to the no RFS scenario) can be ascribed to a reduction in the carbon externality. The 

increased use of biofuels does reduce carbon emission in the United States (by about 29 million 

tCO2e), but this effect is more than offset by increased ROW emissions caused by the RFS-

induced decline in the price of crude oil. Leakage, therefore, turns out to imply that US biofuel 

policies do not contribute to reducing global emissions. It is important to stress that the effects 

we are quantifying here are distinct from the indirect land use effects emphasized by other critics 

of US biofuel policies (e.g., Searchinger et al. 2008). Even abstracting from the latter, we find 

that leakage via terms of trade effects essentially nullifies the potential environmental gains 

arising from using (marginally) more environmentally friendly fuels. 

When comparing the 2015 mandates with the status quo ante, it is apparent that the 

welfare redistribution effects due to the RFS are large (relative to the overall effects). Agriculture 

is the big winner. Because of the sizeable increase in the prices of corn and soybeans, noted 

earlier, the RFS is estimated to increase the sector’s producer surplus by $15.9 billion per year. 

The large increase in land prices that has been observed in recent years (Lence 2014) is certainly 

consistent with these conclusions. Consumers of gasoline fuel also benefit from the decrease in 

gasoline price, whereas users of diesel fuels are actually hurt by the RFS (as are the consumers of 

other refined petroleum products). Overall, therefore, these results suggest that repeal of the RFS 

would lower domestic welfare, both because of terms of trade effects, and because the resulting 
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excess taxation of biofuels (relative to fossil fuels) would excessively depress biofuel production. 

It is also of some interest to note that, compared with the no RFS scenario, the laissez faire 

results in higher welfare. This seems counterintuitive, given that the welfare function includes an 

externality cost, and the laissez faire does not have corrective motor fuel taxes. One of the 

reasons for this outcome is that—given the assumed social cost of carbon—motor fuel taxes are 

set at a higher level than what would be required to internalize the carbon emission externality.19 

 

2.6.1.2   Year 2022 mandates 

The second-to-last column in both Table 2.3 and Table 2.4 considers the 2022 RFS 

scenario, the terms of which were discussed earlier and are illustrated in Table 2.1. The major 

differences in mandated volumes from 2015 levels is that the implied biodiesel mandate is 

increased by 84%, whereas the implied corn-ethanol mandate is increased by just 7%. Despite 

the modest increase in corn ethanol production, the ethanol blending ratio (fraction of ethanol in 

total gasoline fuel) exceeds 10%, a consequence of the decline in gasoline fuel demand 

associated with higher gasoline prices. Both corn and soybean prices increase substantially, 

relative to the status quo. The increase in soybean price (10.3%) is larger than the increase in 

corn price (5.4%), relative to the status quo, a consequence of the need to expand biodiesel 

production to meet the advanced biofuel mandate. This is also reflected in a much higher 

biodiesel RIN price (again under the assumption of no biodiesel subsidy).  

The increased use of both biofuels, combined with an overall decline in gasoline fuel 

consumption, achieves some pollution reduction (unlike the 2015 mandates case). As for welfare 

                                                 
19 Given the assumed emission rates and social cost of carbon, the per-gallon Pigouvian taxes needed to correct the 
externality would be $0.237 for gasoline, $0.267 for diesel, $0.131 for corn-based ethanol, and $0.106 for biodiesel. 
Of course, motor fuel taxes can be rationalized in the pursuit of more than just reduction in carbon emissions, such 
as reducing congestion and other externalities associated with vehicle use (Parry and Small 2005). 
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measures, however, Table 2.4 shows overall welfare is considerably lower with the 2022 

mandates than with 2015 mandates. The increase in crop prices benefits farmers, as the 

agricultural sector’s aggregate producer surplus is highest among the scenarios we have 

considered. Despite the further improvement in the US terms of trade (in addition to increased 

prices of agricultural exports we have a decrease in the price of crude oil imports, relative to 

2015 mandates), overall welfare declines. This is because these pecuniary effects are offset by 

the efficiency cost of expanding biofuel production (the supply price of biodiesel is increased by 

$0.78 per gallon, and the supply price of ethanol also increases by $0.06 per gallon). In the end, 

our model shows that biodiesel produced from vegetable oil turns out to be a costly way to 

increase biofuel supply. The projected expansion of the cellulosic biofuel mandate also weighs 

heavily on the welfare impacts of the 2022 mandates scenario. The large excess cost of these 

biofuels relative to consumer value—captured by the D3 RIN price that we have assumed, based 

on current market conditions—makes expansion of cellulosic biofuel use particularly onerous. 

 

2.6.1.3   Optimal mandates 

One of the advantages of the structural model that we have developed is that we can 

compute “optimal” mandates. In this second best scenario, we take as given existing motor fuel 

taxes and ask what level of mandates would maximize the welfare function (Marshallian surplus 

net of external damages). The grid search method that we implemented identifies an optimal 

biodiesel mandate of 1.66 billion gallons, zero mandates for cellulosic biofuel, and an overall 

renewable fuel mandate of 19.4 billion gallons (implying an effective corn-based ethanol 

mandate of approximately 17.7 billion gallons). Thus, the constrained optimal mandates that we 

find would envision an 18% expansion of the implied corn-based ethanol mandate, relative to the 
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year 2022 scenario, and a drastic reduction of the advanced biofuel mandate (including zero 

cellulosic biofuel). The corn price would increase, relative to both 2015 mandates and the year 

2022 scenario, but the soybean price would decline.  

The corn price increase results in higher marginal cost of supplying ethanol, and the 

ethanol price also increases. Consequently, the ethanol RIN price also increases. Table 2.3 

indicates that the biodiesel RIN price also increases with the optimal mandates, relative to 2015 

mandates, despite the fact that soybean oil price is lower. Note, however, that the optimal 

mandate scenario presumes the elimination of the biodiesel subsidy ($1 per gallon), so that the 

RIN price in the optimal mandate case reflects the full extent of the marginal cost of biodiesel 

production in excess of its consumer valuation (if the $1 subsidy were preserved, the optimal 

mandates would entail essentially a zero RIN price for biodiesel).20 These optimal mandates 

would result in higher emissions than with the projected 2022 mandates. The overall welfare 

gains associated with such optimal mandates, relative to 2015 mandates is $0.9 billion, but 

relative to the projected 2022 scenario the gains amounts to $5.4 billion. The ethanol blending 

ratio with optimal mandates turns out to be 12.14%. As discussed earlier (see footnote 18), this 

blending may be supportable given the current fleet of FFVs, provided FFV motorists were not 

constrained by the availability of E85 refueling stations. Hence, the welfare gain that we estimate 

would result from optimally rebalancing RFS mandates can be interpreted as the upper bound of 

the potential payoff of whatever investments may be required to avoid the blend wall.21 Whether 

such investments are socially beneficial, of course, would depend on their costs.  

                                                 
20 Similar considerations also pertain to the reported RIN prices for the year 2022 scenario. 

21 As noted by a reviewer, a more accurate assessment would compare the welfare of optimal mandates in table 4 
with the welfare of mandate levels that are optimal with a binding blend wall. If we interpret the latter as the optimal 
mandates conditional on a maximum ethanol blend ratio of 10%, we find that they would produce a welfare change 
of $4 million (relative to no biofuel policies). Hence, the implied payoff associated with E85 infrastructure 
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2.6.2   Sensitivity analysis 

Inevitably, some of the assumed elasticity values or coefficients used to parameterize the 

model may be perceived as having a degree of arbitrariness. We note at this juncture that the 

existing econometric evidence can only be of partial help, both because of the limited number of 

relevant studies, and because the structure underlying existing econometric estimates may not be 

entirely consistent with the structure of this essay’s model. In any event, sensitivity analysis can 

be helpful to assess the robustness of the results to alternative parameter values. Here we present 

the results associated with alternative assumptions concerning the ROW elasticity of crude oil 

supply to the United States, and the ROW elasticities of demand for US agricultural exports. A 

more comprehensive set of sensitivity analyses is presented in the Appendix.  

In the logic of the model, there are two distinct reasons for RFS policies: to correct the 

carbon pollution externality (under the presumption that biofuels are less polluting than fossil 

fuels); and, to exploit the terms of trade. Concerning the first of these objectives, the second best 

setting of the model needs to account for the fact that existing motor fuel taxes also ameliorate 

the carbon externality. Furthermore, as noted, insofar as these taxes are levied on a volume basis, 

they are inherently biased against biofuels (because the latter entail lower pollution effects and 

have lower energy content). This imbalance can, to a degree, be addressed by RFS mandates 

because these policy instruments work as a tax on fossil fuel and a subsidy for biofuel (in a 

revenue neutral fashion, as shown in Lapan and Moschini 2012). And because they tax products 

(fossil fuels) for which the United States is a net importer, and subsidize domestic use of 

                                                 
investments that would permit achieving the blend ratio of the optimal mandates in tables 3 and 4 would reduce to 
$0.3 billion.  
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products (corn and soybean products) for which the United States is a net exporter, RFS 

mandates can also improve the U.S. terms of trade.   

To isolate the contribution of these various elements to the estimated market and welfare 

effects, Table 2.5 reports counterfactual results for scenarios that postulate the absence of all or 

part of the terms of trade effects. Specifically, the columns labeled as “no TOT effects” presumes 

that the ROW excess supply of crude oil, and the ROW excess demand for agricultural products, 

are infinitely elastic (such that the prices of crude oil, corn, soybean oil and soybean meal are 

constant at the calibrated values). Under these assumptions, we evaluate both 2022 projected 

mandates and optimal mandates. Because by assumption there are no terms-of-trade effects here, 

we find that 2022 projected mandates would entail a large welfare loss (relative to the no RFS 

scenario) of $11.3 billion, despite the fact that they considerably decrease carbon externality 

(because there is no leakage in this case). Without terms of trade effects we also find that there is 

no scope for biofuel policies. Note that, even without terms of trade effects, there remains market 

failure arguments for intervention (carbon externality and the overtaxing of biofuels by existing 

motor fuel taxes). But the assumed technological requirement for ethanol use as an oxygenate, 

which is binding at the optimal solution, make such considerations irrelevant.  

The last four columns of table 5 decompose the importance of terms of trade as arising 

from the crude oil market or from agricultural markets. When there are no crude oil terms of 

trade, such that the price of crude oil is fixed at the baseline level, we find that 2022 mandate 

levels still entail considerable welfare loss relative to the no RFS scenario. Optimal mandates for 

this case are close to those reported in Table 2.3 and lead to a $3.1 billion gain in overall welfare 

(relative to no RFS). If we do allow crude oil price to adjust, and simply postulate that the ROW 

demands for US agricultural exports are perfectly elastic, then the last two columns in Table 2.5 
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indicate large welfare losses associated with 2022 mandates, and minor gains arising from 

optimal policies (a mere $0.1 billion more than in the no RFS scenario).  

The combined evidence of tables 4 and 5 suggests that virtually all of the estimated 

increase in US aggregate welfare is ultimately due to the positive impacts that the RFS has on the 

US terms of trade. Mandates result in increased prices of corn and soybean, and a decreased 

price of crude oil. Because the United States is a net exporter of corn and soybean products (both 

before and after the RFS), and a net importer of crude oil, these changed terms of trade are 

beneficial. Furthermore, it seems that the terms of trade effects arising from exports of 

agricultural commodities dominate the beneficial effects associated with decreased crude oil 

price (which are also affected by the leakage effect).  

 

2.6.3   Comparison with other studies 

Differing methodologies and empirical approaches makes comparison of our results with 

those of other studies perilous. Concerning market effects of the RFS, though, we note that our 

estimated agricultural price increases due to the RFS are quite similar to those obtained by 

Carter, Rausser and Smith (2016). Using a completely different methodology—a structural 

vector autoregression econometric approach—these authors estimate that the EISA additional 5.5 

billion gallons ethanol requirement (relative to those envisioned in the 2005 legislation) caused a 

31% long-run increase in corn prices. This is quite consistent with our higher estimate for the 

2015 mandate levels (39% corn price increase), but our model traces the effects of a larger 

mandate level. Our estimated agricultural price increases are smaller than those obtained by Cui 

et al. (2011), reflecting the implications of a much more elaborate model as well as somewhat 



www.manaraa.com

43 

 
 

more conservative elasticity assumptions. Our model is unique in the existing literature, as noted 

earlier, as being able to articulate the impact of the RFS on soybean prices, not just corn prices. 

Other studies have emphasized that the blend wall can make the RFS more costly. 

Similar to our study, Meiselman (2016) recognizes the RIN price linkages implied by the 

hierarchical structure of RFS mandates, but he only considers a closed economy scenario and 

does not envision supply-side interactions between biodiesel and ethanol production. He finds 

that increasing the mandate around the blend wall would reduce GHG emission, but this would 

entail a very high (marginal) social cost ($800/tCO2e). Although we do not have a comparable 

scenario for this estimate, we note that our projected 2022 mandate levels improve on carbon 

emission, both relative to 2015 levels and to the no RFS scenario, although welfare declines. The 

latter conclusion, of course, depends on our assumed social cost of carbon (  =$20/tCO2e). To 

investigate how the welfare result is affected by the assumed social cost of carbon, we computed 

two break-even levels for the   parameter. We find that a social cost of carbon of $72/tCO2 

would make welfare with the 2022 mandates the same as in the “No RFS” scenario, but that it 

would take a social cost of carbon of $190/tCO2 to make welfare with the 2022 mandates the 

same as with 2015 mandates.  

 

2.7   Conclusion 

This paper analyzes some of the market and welfare impacts of US biofuel support 

policies under the RFS program. To do so, we have constructed a tractable multi-market model 

that incorporates biodiesel markets as well as ethanol markets, thereby extending previous work 

that focused solely on gasoline-ethanol blends. The paper shows how compliance requirements 

on obligated parties, which are mediated by RIN prices, can be used to identify the relevant zero-
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profit conditions required to close the model. Within this framework, the model is calibrated to 

match market data for the 2015 benchmark year. The model can then be solved and simulated to 

study counterfactual policy scenarios, yielding equilibrium prices, quantities and welfare impacts 

for each experiment of interest. A first-order impact of the RFS is to divert large amounts of corn 

and soybean oil to biofuel production. This reduces the amount of these products available for 

export, and the RFS-induced biofuels production also marginally lowers the US demand for 

refined fossil fuels. Given that the United States are a net importer of crude oil and net exporter 

of corn and soybean products, the favorable terms-of-trade effects that arise because of the RFS 

are quite important in order to assess the resulting welfare impacts. Having endogenized the 

relevant agricultural and energy markets, the model that we construct offers an ideal tool to 

assess the overall consequences, from the point of view of the United States, of current RFS 

policies and alternative paths that may be considered going forward.  

The results that we have presented confirm that the current RFS program considerably 

benefits the agriculture sector. Compared with the status quo ante situation (no RFS), we find 

that current biofuel policies increase corn and soybean prices by 38% and 11% , respectively, 

and also lead to a 1.4% decline in crude oil price. The welfare gain to the United States that can 

be imputed to the RFS, in 2015, is estimated at about $3.4 billion. Virtually all of these US 

welfare gains are due to the impact of RFS policies on the terms of trade. Furthermore, the most 

relevant effects are those associated with the RFS impacts on the price of key US agricultural 

exports (corn and soybean products). The RFS net impact on carbon emission is nil in the 

benchmark year, and minimal with the projected 2022 mandate levels. One of the main reasons 

for this finding is the leakage effects that arise because of increased consumption of fossil fuels 

in the ROW due to the RFS-induced decline in crude oil price.  
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There is considerable uncertainty, and policy debate, concerning future implementation 

of the RFS. The model that we have developed can be used to assess the market and welfare 

consequences of alternative paths. We find that full implementation of the EISA statutory 2022 

mandate levels (except for the widely expected extensive waiver of cellulosic biofuel mandates) 

would be costly to the United States. This is because biodiesel, as the marginal fuel of choice to 

meet the advanced biofuel mandate, does not appear to be an efficient enough tool. Alternatively, 

if we ask what the optimal mandates levels would be in the context of the model, we find that it 

would be desirable to expand corn-based ethanol production beyond the 15 billion gallon cap 

envisioned by the EISA legislation (concomitantly, optimal mandates suggest that a reduction of 

biodiesel production from current levels is also desirable, and no cellulosic biofuel production). 

As noted, of course, the viability of such an option may need to deal with the blend wall issue. In 

any event, relative to 2015 mandate levels, these optimal (second best) mandates produce limited 

welfare gains. This is because, as documented in the analysis we have presented, it is the impact 

of the RFS on agricultural terms of trade that is most important. For these effects to remain 

sizeable, the magnitude of US exports cannot be curtailed too much.  

In addition to quantifying the overall welfare gains, the model permits a characterization 

of the re-distribution effects implied by various scenarios. The magnitudes of such effects are 

quite large, and the documented impacts—agriculture is the big winner—may help to rationalize 

some of the political economy features of the debate about the future of the RFS. Although our 

analysis has been consistently articulated in terms of US welfare, our finding that the 

predominant welfare impacts are rooted in terms of trade effects suggests that this domestic 

program has clear “beggar-thy-neighbor” implications. Obligations undertaken within the World 

Trade Organization (WTO) restrain the ability of the United States to use border policies to shift 
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to other countries some of the costs of its long-standing agricultural support objectives. RFS 

provisions, while prima facie consistent with the national treatment principle of the WTO, are 

apparently effective at shifting some of their costs on foreign constituencies. The fact that the 

latter represent mostly consumers of agricultural products adds weight to the food-versus-fuel 

debate. Finally, our finding that the RFS has minimal impacts on reducing global carbon 

emissions suggests that, from an international perspective, the scope of biofuel policies to 

improve global welfare may be extremely limited.  
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Table 2.1. Statutory Mandates, EPA Final Rulings, and 2022 Scenario (billion gallons) 

 2015 2016 2017  2022 
 EISA EPA EISA EPA EISA EPA   EISA Projected 

Renewable fuel 20.5 16.93 22.25 18.11 24.0 19.28  36.0 20.787
   Advanced biofuel 5.5 2.88 7.25 3.61 9.0 4.28  21.0 5.787
   Biodiesel ≥ 1.0 1.73 ≥ 1.0 1.90 ≥ 1.0 2.00  ≥ 1.0 … a

   Cellulosic biofuel 3.0 0.123 4.25 0.230 5.5 0.311  16.0 0.787 b

   Non-cellulosic  
   advanced biofuel 

2.5 2.757 3 3.38 3.5 3.969  5 5

   Corn ethanol  15 14.05 15 14.5 15 15  15 15

Source: Schnepf and Yacobucci (2013) and EPA (2016). All quantities are in ethanol-equivalent gallons 
except for biodiesel, which are in physical volume. 

Note: a Biodiesel produced as needed (assumed to be the marginal advanced fuel);  b Linear trend 
projection based on 2014-2017 EPA rulings (R2 = 0.998).  
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Table 2.2. Elasticities 

Parameter Symbol Value Source/explanation 

Corn acreage own-price supply elasticity L
cc  

0.29 Hendricks et al. (2014) 

Corn acreage cross-price supply elasticity L
cs  

−0.22 Hendricks et al. (2014) 

Soybean acreage own-price supply elasticity L
ss  

0.26 Hendricks et al. (2014) 

Corn yield own-price elasticity y
cc  

0.05 Berry and Schlenker (2011)

Soybean yield own-price elasticity y
ss  

0.01 Berry and Schlenker (2011)

Domestic demand elasticity of corn cc  −0.20 de Gorter and Just (2009) 

Domestic demand elasticity of soybean meal mm  −0.20 Bekkerman et al. (2012) a 

Domestic demand elasticity of soybean oil vv  −0.20 Bekkerman et al. (2012) a  

Cross-elasticity of domestic corn demand 
w.r.t. mp  

cm  0.065 Calculated b, d ( mc  0.105)

Cross-elasticity of domestic corn demand 
w.r.t. vp  

cv  0.014 Calculated b, d ( vc  0.105)

Cross-elasticity of domestic meal demand 
w.r.t. vp  

mv  0.014 Calculated b, d ( vm  0.065)

ROW import demand elasticity of corn cc  −2.70 Calculated d 

ROW import demand elasticity of soybean 
meal 

mm  −1.70 Calculated d  

ROW import demand elasticity of soybean 
oil 

vv  −1.40 Calculated d  

Domestic supply elasticity of crude oil R 0.25 EIA (2014) 

ROW export supply elasticity of crude oil R 4.40 Assumed d 

Domestic demand elasticity of gasoline fuel 
gg  −0.35 Bento et al. (2009)  

Domestic demand elasticity of diesel fuel dd  −0.15 Assumed c, d 

Domestic demand elasticity of other refined 
petroleum products 

hh  −0.50 Assumed c, d 

Note: a Rounded values. b Calculated assuming that all of the Allen-Uzawa elasticities of substitution are 
the same. c Based on Dahl (2012) and Winebrake et al. (2015). d See the Appendix for more details. 
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Table 2.3. Market Effects of Alternative Policy Scenarios 

 
Laissez  
Faire  

No 
RFS 

2015 
Mandates

2022 
Mandates 

Optimal 
Mandates 

Gasoline motor fuel tax ($/gal.)  0.449 0.449 0.449 0.449 
Diesel motor fuel tax ($/gal.)  0.516 0.516 0.516 0.516 
Biodiesel subsidy ($/gal.)   1.000   
Cellulosic biofuel mandate (billion units)   0.123 0.787  
Advanced biofuel mandate (billion units)   2.880 5.787 1.661 
Renewable biofuel mandate (billion units)   16.930 20.787 19.351 
Corn price ($/bu.) 3.05 2.67 3.68 3.88 3.96 
Soybean price ($/bu.) 9.21 9.11 10.10 11.14 9.69 
Soybean meal price ($/ton) 374.58 376.39 368.49 363.28 369.23 
Soybean oil price (¢/lb.) 22.51 21.24 31.60 41.83 27.87 
Crude oil price ($/bbl) 49.81 49.10 48.40 48.00 48.33 
Gasoline fuel price ($/GEEG) 2.02 2.35 2.22 2.30 2.13 
Diesel fuel price($/DEEG) 1.40 1.98 2.23 2.12 2.51 
Gasoline price ($/gal.) 2.02 1.90 1.72 1.74 1.60 
Diesel price ($/gal.) 1.40 1.47 1.67 1.50 1.92 
Ethanol price ($/gal.) 1.42 1.31 1.61 1.67 1.68 
Biodiesel (supply) price ($/gal.) 2.95 2.86 3.65 4.43 3.36 
Other refined products’ price ($/KEEG) 1.08 1.17 1.26 1.31 1.27 
RIN price for ethanol ($/unit)   0.49 0.50 0.64 
RIN price for biodiesel ($/unit)   0.73 1.99 1.03 
Ethanol quantity (billion gal.) a 8.251 4.123 14.140 15.167 17.778 
Blending ratio of ethanol (%) b 5.657 3.000 9.871 10.652 12.140 
Biodiesel quantity (billion gal.) a 0.686 0.686 1.779 3.275 1.049 
Gasoline fuel quantity (billion GEEGs) 143.401 136.220 139.051 137.353 141.166 
Diesel fuel quantity (billion DEEGs) 49.169 47.336 46.548 46.900 45.679 
Other refined products (billion KEEGs) 82.046 79.239 76.476 74.889 76.186 
Corn production (billion bus.) 13.665 13.191 14.216 14.156 14.716 
Soybean production (billion bus.) 4.029 4.137 3.927 3.975 3.796 
Corn demand (billion bus.) 8.096 8.258 7.851 7.794 7.717 
Corn export (billion bus.) 2.680 3.198 1.833 1.564 1.450 
Soybean meal demand (million tons) 47.182 46.576 48.408 49.042 48.701 
Soybean meal export (million tons) 54.984 54.511 56.572 57.932 56.378 
Soybean oil demand (billion lbs.) 12.758 12.727 12.260 11.525 12.651 
Soybean oil for biodiesel (billion lbs.)   8.363 19.803 2.774 
Soybean oil export (billion lbs.) 31.447 32.716 22.421 12.261 26.124 
Crude oil domestic supply (billion bbl) 3.475 3.463 3.450 3.443 3.449 
Crude oil import (billion bbl) 3.281 3.092 2.907 2.800 2.888 
Crude oil foreign demand (billion bbl) 23.132 23.201 23.268 23.307 23.275 
Note:  a Quantities (from all sources) blended into US fuel supply. b Calculated by using physical units 
(ratio of gallons of ethanol to gallons of gasoline fuel).  
  



www.manaraa.com

50 

 
 

Table 2.4. Welfare Effects of Alternative Policies (changes relative “No RFS” scenario) 

 Laissez 
Faire  

2015 
Mandates 

2022 
Mandates 

Optimal 
Mandates 

Social welfare ($ billion) 3.112 3.421 -1.058 4.316 

  Pollution effect a -1.880 -0.104 0.422 -0.378 
  Tax revenue  -86.168 0.513 2.168 3.197 
  P.S. Agriculture  b 10.278 15.891 23.753 16.209 
  P.S. Crude oil supply  b 2.472 -2.425 -3.814 -2.679 
  Efficiency cost of cellulosic biofuel c   -0.221 -1.417  
  C.S. Crop products’ demand  d -3.223 -9.092 -11.619 -10.880 
  C.S. Fuel demand d 74.169 5.953 0.504 6.673 
        Gasoline fuel demand 45.867 17.800 7.078 31.336 
        Diesel fuel demand  28.301 -11.848 -6.575 -24.664 
  C.S. Other refined products d 7.464 -7.094 -11.055 -7.825 

Change in GHG emissions (million tCO2e) a 94.00 5.21 -21.09 18.91 

     Changes in the United States  128.58 -28.84 -74.69 -18.71 
     Changes in the ROW -34.58 34.04 53.60 37.62 

Notes: a In the “No RFS” scenario the GHG emission level is 14,684 [2,976 (US) + 11,709 (ROW)] 
million tCO2e, the monetary cost of which is $293.7 billion. b P.S. = producer surplus. c Computed based 
on a D3 RIN price of $1.80. d C.S. = consumer surplus. 
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Table 2.5. Sensitivity Analysis: Terms-of-Trade (TOT) Effects 

 Baseline No TOT effects No crude oil TOT No agricultural TOT

Policies / Market Effects 
2015 

Mandates
2022 

Mandates
Optimal 

Mandates 
2022 

Mandates
Optimal 

Mandates  
2022 

Mandates
Optimal 

Mandates 
Gasoline motor fuel tax ($/gal.) 0.449 0.449 0.449 0.449 0.449 0.449 0.449 
Diesel motor fuel tax ($/gal.) 0.516 0.516 0.516 0.516 0.516 0.516 0.516 
Biodiesel subsidy ($/gal.) 1.000       
Cellulosic biofuel mandate (B units) 0.123 0.787  0.787  0.787  
Advanced biofuel mandate (B units) 2.880 5.787 1.117 5.787 1.322 5.787 1.117 
Renewable biofuel mandate (B units) 16.930 20.787 5.159 20.787 17.594 20.787 9.662 

Corn price ($/bu.) 3.68 3.68 3.68 3.88 3.82 3.68 3.68 
Soybean price ($/bu.) 10.10 10.10 10.10 11.14 9.50 10.10 10.10 
Soybean meal price ($/ton) 368.49 368.49 368.49 363.28 370.58 368.49 368.49 
Soybean oil price (¢/lb.) 31.60 31.60 31.60 41.83 25.93 31.60 31.60 
Crude oil price ($/bbl) 48.40 48.40 48.40 48.40 48.40 48.03 48.88 

Gasoline price ($/gal.) 1.72 1.76 1.88 1.75 1.63 1.75 1.79 
Diesel price ($/gal.) 1.67 1.50 1.44 1.52 1.90 1.48 1.65 

Ethanol price ($/gal.) 1.61 1.61 1.61 1.67 1.64 1.61 1.61 
Biodiesel (supply) price ($/gal.) 3.65 3.65 3.65 4.43 3.22 3.65 3.65 
RIN price for ethanol ($/unit) 0.49 0.44 0.41 0.49 0.59 0.44 0.46 

RIN price for biodiesel ($/unit) 0.73 1.47  1.97 0.95 1.48  

Ethanol quantity (B gal.)  14.140 15.167 4.129 15.167 16.360 15.167 8.633 
Blending ratio of ethanol (%) 9.877 10.685 3.000 10.703 11.222 10.675 6.140 

Biodiesel quantity (B gal.) 1.779 3.275 0.686 3.275 0.823 3.275 0.686 

Corn export (billion bu.) 1.833 1.568 4.628 1.564 1.650 1.568 3.370 

Soybean meal export (M tons) 56.572 57.421 47.636 57.932 56.026 57.421 51.657 

Soybean oil export (B lbs.) 22.421 10.982 30.785 12.261 28.051 10.982 30.785 

Crude oil domestic supply (B bbl) 3.450 3.450 3.450 3.450 3.450 3.443 3.458 

Crude oil import (B bbl) 2.907 2.797 3.114 2.786 2.922 2.810 3.033 

Welfare Impacts  (relative to “No RFS”)       

Social welfare ($ billion)  -11.268 0.0 -2.883 3.057 -9.522 0.146 

  Pollution effect   1.549 0.0 1.696 0.358 0.330 -0.191 

  Tax revenue   2.088 0.0 1.880 2.762 2.364 1.163 

  P.S. Agriculture   -1.243 0.0 23.276 13.283 -0.797 -1.412 

  P.S. Crude oil supply   0.0 0.0 0.0 0.0 -3.646 -0.741 

  Efficiency cost of cellulosic biofuel  -1.417 0.0 -1.417 0.0 -1.417 0.0 

  C.S. Crop products’ demand   0.000 0.0 -11.612 -9.538 0.0 0.0 

  C.S. Fuel demand   -0.985 0.0 -4.937 3.240 4.219 3.518 

  C.S. Other refined products   -11.260 0.0 -11.769 -7.048 -10.576 -2.192 

GHG emissions change (million tCO2e) -77.45 0.0 -84.82 -17.90 -16.52 9.55 

     Changes in the United States  -77.45 0.0 -84.82 -17.90 -67.76 -0.85 

     Changes in the ROW  0.00 0.0 0.0 0.0 51.24 10.40 
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APPENDIX A    

SUPPLEMENTARY MATERIALS 

A.1   Parameterization of Supply Functions and Computation of Producer Surplus 

 For the simulation of counterfactual policy scenarios, we will rely on a linear 

parameterization of the supply functions of corn and soybeans,  ,c c c sq S p p  and 

 ,s s c sq S p p . Specifically, we write:  

(38) c c cc c cs s

s s sc c ss s

q a a p a p

q a a p a p

  

  
 

where, by symmetry, cs sca a . Let ( )( )ij i j j iS p p S    , , ,i j c s , denote supply elasticities. If 

the above linear equations represent the first-order approximation to the true supply equations at 

a quantity-price point ( , )q p , then the parameters in (38) can be expressed as  ij ij i ja q p , 

, ,i j c s  . Because we think of supply response as embedding both a yield response and an 

acreage response—as represented by ( , ) ( ) ( , )i i j i i i i jS p p y p L p p —then  

 
y L

ii iiii    , ,i c s   

 L
ij ij  ,  ,i j c s   

where  ( )( )L
ij i j j iL p p L     denote acreage response elasticities and ( )( )

y
i i i iii y p p y     

denote yield response elasticities.  

 

A.1.1   Computation of producer surplus 

The system of linear supply equations  ,c c sS p p  and  ,s c sS p p  parameterized in (38) 

is consistent with the quadratic profit function: 
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 2 2
0

1
( , ) 2

2c s c c s s cc c cs c s ss sp p a a p a p a p a p p a p        

where we have maintained the symmetry condition cs sca a . Under our working assumption that 

the use of land for corn and soybean production is derived from a profit maximizing allocation of 

a fixed overall land TL  over three possible uses—corn, soybeans and everything else—this 

quadratic profit function measures the aggregate surplus to the agricultural sector. Because land 

is treated as an allocatable fixed factor, its rental price will of course change as corn and soybean 

prices change, but returns to land (and to other fixed factors) are of course captured by the profit 

function. For any two scenarios yielding equilibrium prices 0 0( , )c sp p  and 1 1( , )c sp p , the aggregate 

change in gross producer surplus in the agricultural sector would be computed as 

1 1 0 0( , ) ( , )c s c sp p p p     . 

The underlying presumption, in this procedure, is that all other output and input prices 

(apart from land, of course) are held constant. Given the nature of our policy scenarios, one set of 

prices that, strictly speaking, cannot be thought of as constant across scenarios is that of energy 

inputs used in agriculture, which will likely be affected by changes in the energy prices that are 

endogenous in the model. To account for this effect on producer surplus in a straightforward 

way, we assume that energy inputs are used in fixed proportion with land, with the same 

coefficient across all uses. This implies that changes in energy input prices will not affect land 

allocation decisions, nor total energy use in agriculture. This assumption is broadly supported by 

the (limited) empirical evidence available to date. Miranowski (2005) estimated the US 

agricultural sector energy use in 2002 to be about 1.7 quadrillion BTUs overall, of which about 

1.1 quadrillion BTUs was in direct energy use (mostly fuel) and the reminder as indirect energy 
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use (e.g., fertilizers and pesticides). Beckman, Borchers and Jones (2013) show that this energy 

use level was fairly stationary for the period 2001-2011.  

To account for the impact of changes in energy input prices on calculated producer 

surplus, we focus on direct energy use in agriculture. Because the largest component of direct 

energy use in agriculture is diesel fuel, we assume that the agricultural energy input price eip  is 

proportional to the price of diesel fuel dfp . Given that, we can express the total amount of energy 

used in agriculture, denoted AE , in DEEG units. The energy content of distillate Fuel Oil (15 

ppm Sulfur and Under) is 137,381 BTU/gallon. Hence, 1.1 quadrillion BTUs is equivalent to AE

=8.007 billion DEEGs.  Changes in energy prices will impact producer surplus (increase in 

energy prices will drive down land prices, for instance). The “net” producer surplus change can 

be calculated as: 

A dfPS E p      .  

Note: clearly, 0a  does not matter for this computation, so there is no need to calibrate it. 

 

A.2   Parameterization of Demand Functions 

Demand functions are derived from a quadratic parameterization for the sub-utility 

functions that appear in the indirect utility function of equation (9) in the main text. To illustrate, 

let ( )v p  represents one of the sub-utility functions in equation (9) in the main text [e.g., ( )v p  

represents ( , , )c m vp p p  or ( , )gf dfp p or ( )hp ]. By Roy’s identity, demand functions then 

satisfy i ix v p   . If the function ( )v p  is quadratic, demand functions are linear and can be 

represented as: 
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(39) 
1

, 1,2,...,
n

i i ij j
j

x a b p i n


    

where, by symmetry, ij jib b .  To ensure the required curvature conditions, the n n  symmetric 

matrix ijb    needs to be negative definite. The unrestricted system in (39) has (3 ) 2n n  free 

parameters. 

For calibration purposes, we start with elasticity values, and retrieve the parameters of the 

demand functions. Marshallian (and Hicksian) elasticities are defined as:  

(40) 
j

ij ij
i

p
b
x

     

which define the n n  elasticity matrix ij   . Although this matrix is not symmetric, it is 

obvious that, in view of (40), it contains only (1 ) 2n n  free parameters. To calibrate the 

parameters of the system in (39) to the (data-defined) point ( , )p x , where 1 2( , ,..., )np p p p  and 

1 2( , ,..., )nx x x x , given assumed elasticity values ij , then 

(41) , , ,i
ij ij

j

x
b i j j i

p
     

(42) 
1

, 1,2,...,
n

j j jk k
k

a x b p j n


    

 

A.2.1   Parsimonious version 

The strong separability assumption that is maintained in equation (9) in the main text 

already implies zero cross-price effects between goods belonging to different groups (e.g., 

gasoline fuel and soybean oil demands). To put more structure on the substitution possibilities 

between goods belonging to the same group, we start by recalling the Allen-Uzawa partial 
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elasticities of substitution ij  (one of the concepts that extend the two-good elasticity of 

substitution notion to the case of n  goods). This elasticity is defined as  

 
  

2( , ) (.)

(.) (.)

i j
ij

i j

e p u e p p

e p e p


   


   
 

where ( , )e p u  is the expenditure function that is dual to ( )v p . For our quadratic specification (and 

given quasilinearity, for which Hicksian and Marshallian demands are identical), then 

(43) 
( , )

,
( ) ( )

ij
ij

i j

e p u b
i j

x p x p



 


 

To reduce the number of parameters to be calibrated, we assume that, at the calibration 

point ( , )p x , all the elasticity of substitutions are equal to each other, i.e.: 

Assumption. 0 ,ij i j    . 

Given this assumption, then from (43) it follows that 0 ( ) ( ) ( , )ij i jb x p x p e p u , which implies 

(44) 0( ) ,ij jp s i j    

where ( ) ( , )j j js p x p e p u  denotes the jth good expenditure share. Hence, all off-diagonal 

coefficients ,ijb j i , can be computed upon knowledge of the elasticity of substitution 0 .   

However, rather than picking an arbitrary value 0 , it may be more transparent to rely of 

the notion of “total elasticity”. Define total or aggregate demand for the x  vector as the fix-

weight sum  

(45) 
1

( ) ( )
n

i i
i

Q p p x p


   

The question posed is how this aggregate quantity changes when the price vector p  is scaled by 

the scalar 0k  . This leads to the elasticity of total demand 0  , which is defined as follows: 
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(46) 0
1

( )
( )

( ) k

Q kp k
p

k Q kp








 

Using the definition in (45), and evaluating the result at the calibration point ( , )p x , we find 

(47) 0
1 1 1

n n n

i ii i ij
i i j i

s s  
   

 
    

 
                     

where 
( )

( )
i i

i
p x p

s
Q p

  are weights (shares) that satisfy 1ii
s  .   

Note that, when the goods are substitutes (i.e., 0 ,ij j i   ), as we should presume in our 

model, then the total elasticity is smaller, in absolute value, than the weighted average of the 

own-price elasticities of individual demands.  

Definition: Let (0,1]  define the ratio, at the calibration point, between total elasticity and the 

weighted average of the own-price elasticities of individual demands. That is,  0
1

n

i ii
i

s  


  . 

Using this definition along with (47) and (44), then: 

(48) 1
0

1

(1 )

(1 )

n

i ii
i

n

i i
i

s

s s

 
 



 







 

In conclusion, given 0 ,ij i j    , all cross-price elasticities can be computed upon 

the knowledge of the elasticity of substitution, i.e., 0ij js  .  Furthermore, if total elasticity is a 

fraction   of the weighted average of the own-price elasticities of individual demands, then, 

having assumed the n  own-price elasticities of demand, 0   can be calculated from (48). Note 

that the assumption of zero cross-price elasticities is equivalent to 1   (which would imply 

0 0  ). 
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A.3   Derivation of the Zero-Profit Condition for the Integrated Refining-Blending 
Industry 

From equation (27) in the main text, and using the RIN prices in equations (25) and (26) 

of the main text, we obtain:  

(49)  
( )

ˆ ˆ
b b df b df

gf g gf e e gf e gf b ce ce

p t p
p p t s p t p s s R





   

        
 


 

Next, the RFS fractional requirements is  can be expressed in terms of the mandated quantities, 

as per equations (29)-(31) in the main text, to obtain:  

(50)   
  

    

( )

( )

gf g gf g d g d

M M
M M a ce M
rf a e gf e gf b b df b df ce ce

p p t x x X X

x x
x x p t p p t p x R 



    


        

. 

Because equations (27) and (28) in the main text imply the (separate) arbitrage condition (33) in 

the main text, the left-hand-side of (50) can be represented alternatively as 

(51)      gf g gf g g df d df d dp p t x X p p t x X        

Furthermore, with binding mandates, domestic production of ethanol and biodiesel satisfy 

equations (16) and (17) in the main text, that is:  

(52) M M
e e rf ax X x x    

(53)  M M
b b b a ce sex M N x x M       

Using the relations in (51)-(53), the zero-profit condition (50) can then be represented as in 

equation (32) of the main text: 

 

( )( ) ( )( )

( )( ) ( )( )

gf gf g g g df df d d d

se M
e gf e gf e e b b df b df b b b b b df b df ce ce

p t p x X p t p x X

M
p t p x X p t p x M N p t p x R  



       

              
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A.4   Equilibrium with No RFS Mandates but with a Minimum-Use Requirement for  
Ethanol as an Oxygenate 

 This scenario assumes that there are no RFS mandates for biofuels, but that a fraction 

(0 ,1)oxy   of total gasoline fuel needs to be accounted for by ethanol to achieve the desired 

octane level. Note: this is treated as a technological requirement, not an RFS mandate. Hence, we 

have  (1 )e oxy oxy g g se ex x X M X        . For the case in which this technology 

requirement is binding, therefore, the equilibrium conditions are as follows. 

  

Market clearing conditions 

(54)   1(1 )
, ( , , ) ( ) ( )

(1 )

oxy
c c s c c c m v c c g g se e

e oxy

S p p D p p p D p x X M X


 
 

          
  

(55)    2, ( , , ) ( ) ( )
(1 )

oxy
m s c s s m m c m v m m g g se e

e oxy

S p p D p p p D p x X M X



 

 
            

 

(56)   , ( , , ) ( ) b
v s c s s v v c m v v v

b

x
S p p D p p p D p


       

(57) ( ) ( , )
(1 )

oxy
g g e g g gf gf df

oxy

x X x X D p p





 
      

    

(58)   ( , )d d b b b b df gf dfx X x M N D p p      

(59) ( )h h h hx X D p   

 

Production relationships  

(60)    g g R R R Rx S p S p     

(61)    g g R R R Rx S p S p     
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(62)    g g R R R Rx S p S p     

 

Price arbitrage relations (zero-profit conditions) 

(63) v v m m s vp p p w        

(64)  2 11e e m c ep p p w          

(65) b b v bp p w       

(66) g g d d h h R gp p p p w        

(67) d df dfp p t        

(68) b b df dfp p t   

    

Zero-profit condition in ethanol blending sector 

(69)      (1 ) (1 )gf oxy e oxy g gf oxy e gf oxyp p t p t             

 

Equations (54) to (69) can be solved for 16 endogenous variables— cp , sp , mp , vp , Rp , gfp , 

dfp , gp , dp , hp , ep , bp , bx , gx , dx  and hx —conditional on given exogenous stock changes ( c , 

s , m  and v ) and exogenous imports, exports and production  ( bM , bN , seM , gX , dX , hX  

and eX ). 
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A.5   Elasticity Relations and Assumptions 

A.5.1 Crude oil and refined products 

A.5.1.1   Demand elasticities 

Our model takes the demand elasticities of refined petroleum products (gasoline, diesel, 

and “other” fuels) as primitives. A considerable body of literature, succinctly reviewed in 

Difiglio (2014) and Green and Liu (2015), has documented that these demand functions are very 

inelastic. Indeed, Hughes, Knittel and Sperling (2008) find that they have become more inelastic 

in recent years. They estimate a short run elasticity of demand for gasoline to be -0.034. Lin and 

Prince (2013) similarly find short-run elasticities of that magnitude, and their dynamic models 

estimate the long-run elasticity of gasoline demand to be -0.239  and -0.265 (with control for 

variance, and no control, respectively). Clearly, very inelastic demand would translate into larger 

price swings in our counterfactual simulations. Also, for the scenarios that we consider we intend 

to provide an intermediate-to-long run evaluation. Hence, we conservatively assume the 

elasticity of gasoline demand to be -0.35. This is the elasticity value estimated by Bento et al. 

(2008) with a microeconomic model that allows consumers to respond to price changes with both 

car choice and miles traveled. We note that this value is also close to the estimated value of -0.37 

obtained, with a completely different methodology, by Coglianese et al. (2016). As for diesel 

fuel, because it is largely used for transportation by heavy duty vehicles, its demand is widely 

considered to be even more inelastic than gasoline demand. Dahl (2012), in a comprehensive 

review of a large body of literature, puts the elasticity of US gasoline and diesel fuel demands at 

-0.30 and -0.07, respectively. Winebrake et al. (2015) find diesel demand elasticity to be 

essentially zero. Our baseline assumption reflects the consensus that diesel demand is more 

inelastic than gasoline demand, but again with an eye to intermediate-to-long run interpretation 
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of the model, we postulate the diesel demand elasticity to be -0.15. As for the elasticity of 

demand for the “other fuels”, some components (such as heating oil) are likely to have more 

elastic demand than gasoline, given the availability of substitutes, whereas other components 

(such as jet fuels) may be more inelastic. In total, our baseline parameterization presumes that 

this aggregate is more elastic than gasoline, and we assume this elasticity to be -0.50. In 

conclusion, therefore, we assume: 

0.35gg    ,  0.15dd     and  0.50hh   . 

On the import side, we parameterize a ROW export supply elasticity that, implicitly, 

reflects ROW supply and demand elasticities for crude oil. As a preliminary step, therefore, it is 

of some interest to understand what the foregoing assumptions about US demand for refined fuel 

products imply for the underlying demand for crude oil. To this end, let ,i iQ p  denote quantity 

and price of the ith refined product (gasoline, diesel, and other), and ,R RQ p  denote the quantity 

and price of crude oil. Then, from the assumed Leontief technology, i i RQ Q  ( , ,i g d h ), the 

price arbitrage relation is  R g i ii
p w p   . Differentiating the latter (working with the fuel 

inverse demand functions is more convenient in this case) we obtain: 

 R i i i i
ii

R i i i

dp p dp Q

dQ Q dQ p


     

  
       

If we define the elasticity of crude oil demand as 
1

R R
R

R R

dp Q

dQ p



   
 

, and recall that the refined 

fuel products’ demand elasticities satisfy 
1

i i
ii

i i

dp Q

dQ p



   
 

(assuming, as we do, zero cross-price 

effects), then the relation of interest is: 
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   1 1 1 1g g d d h h

R R gg R dd R hh

p p p

p p p

  
   

    

Using the values of prices at the calibrated 2015 year, the foregoing assumptions about demand 

elasticities for refined fuel products imply a US crude demand elasticity of 0.20R   , which is 

very much in line with values discussed in the literature reviewed in the foregoing. 

 

A.5.1.2   Supply elasticities 

Similar to demand elasticities, the consensus is that the crude oil supply elasticity is very 

inelastic—see the literature reviewed by Difiglio (2014) and Green and Liu (2015). For example, 

Erickson and Lazarus (2014), in evaluating the potential impacts of the proposed Keystone XL 

pipeline, assume a baseline oil supply elasticity of 0.13.  Our baseline adopts the supply elasticity 

values, for both US and foreign crude oil supply, used by the U.S. EIA National Energy 

Modeling System (EIA 2014). Hence, we assume 0.25R R   . 

 

A.5.1.2   ROW export supply elasticity 

The export supply of crude oil from the rest of the world (ROW) to the United States is 

notionally defined as: ( ) ( )R RX S p D p  . Differentiating this identity, and defining the ROW 

export supply elasticity as R
R

R

pdX

dp X
  , we find: 

R R R
S D

X X
    . 

We have already assumed that 0.25R  . If we further assume that the ROW demand elasticity 

for crude oil is similar to that of the United States (the implied value for which is 0.20R   , as 
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discussed above), then using quantity values for the calibrated 2015 year we find 4.4R  , and 

this is the assumed value in our baseline parameterization. 

 

A.5.2   Agricultural supply response 

Given our postulated supply system, supply elasticities reflect both acreage allocation 

decisions as well as yield response effects: 
yL

ii ii ii     (i=c,s) and L
ij ij   (i=c,s, i≠j) . For 

acreage elasticities we use the estimates obtained by Hendricks et al. (2014), which are 

consistent with previous literature that has highlighted inelastic response. In particular, their 

acreage response elasticities are similar to those estimated by Berry and Schlenker (2011). As for 

yield elasticities, Berry (2011) provides an extensive review of existing empirical evidence, and 

strongly criticizes the large yield response elasticity implemented in some CGE models. The 

broad consensus in the profession is that virtually all of the crop supply response comes from 

acreage response, not from yield response. The agronomic basis for this perspective is that 

farmers have limited means to increase yield in response to changes in expected prices (variation 

in fertilizer use is one of the few tools at their disposal, especially for rainfed agriculture). 

Somewhat at odds with these conclusions, Miao et al. (2016) find a very large response for corn 

(elasticity of yield response to price equal to 0.23) and no response for soybean yields. Exactly 

how one should think of the yield response to price, in the context of our model, is perhaps a 

moot point. In the long run yield is increasing because of technical change driven by a multitude 

of factors, including exogenous technological opportunity, as well as input and output prices via 

the so-called induced innovation hypothesis. Here, it seems appropriate to think of yield response 

to price over and above such secular trend in yield increases. Having conditioned on such a 

trend, and using a careful instrumental variables approach, Berry and Schlenker (2011) find that 
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yield response to price is very small in magnitude (and sometime negative). For both corn and 

soybeans, for all the models they consider, they cannot reject the hypothesis that yield response 

to price is zero. Here we adopt the point estimates from a set of models reported by Berry and 

Schlenker (2011), specifically the instrumental variable estimations in columns (1a) and (1b) of 

their Table 1 (for corn) and Table 2 (for soybean). Taking the average of the two point estimates 

they report (which differ because of a different specification of the time trend), we put 0.05y
cc   

and 0.01y
ss  . Hence, for the supply elasticities we have 0.29 0.05 0.34cc     and 

0.26 0.01 0.27ss    , and, as before, 0.22L
cs cs    . The last elasticity, L

sc sc   will be 

computed from the symmetry condition. 

 

A.5.3   Soybean complex 

Estimates of domestic demand elasticities for soybean oil and meal are scarce. Piggott 

and Wohlgenant (2002) used estimates of -0.13 for the elasticity of US meal demand and -0.18 

for the elasticity of US soybean oil demand. Drabik, de Gorter and Timilsina (2014) rely on this 

source for the elasticity of meal demand, but assume a larger value for the elasticity of soybean 

oil demand. Again, here we are largely thinking of mutatis mutandi demand functions (where the 

price of closely related products, not explicitly included in the parameterization, are allowed to 

adjust), so an inelastic response is probably sensible. Hence, we assume 0.20mm    and 

0.20vv   . Because the United States is a net exporter of both soybean meal and oil, we also 

need to specify the elasticity of import demand by the ROW for these products. Notionally, these 

import demands are defined as m m mM D S   for soybean meal and v v vM D S   for soybean 

oil. Consider soybean meal first. Defining the import demand elasticity as mm
m

m m

pdM

dp M
  , then 
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m m
m m m

m m

D S

M M
    . The foregoing discussion can provide some guidance as to the 

responsiveness of the foreign demand functions mD  represented by m , but import demand 

functions also reflect the responsiveness of foreign supplies. To account for that, the meal supply 

elasticity m  needs to be defined in terms of the underlying structural representation. Given the 

ROW supply of soybeans ( )s s sS S p , the meal production technology m m sS S , and the 

arbitrage relation s m m v vp w p p    , we find: 

m s mm s s
m m m

m s sm s m

p p pdS dS S

dp dp pS S S
           m m

m s
s

p

p


   . 

Similarly, for ROW soybean oil, recalling that v v sS S , we find v v
v s

s

p

p


   . Hence, 

the ROW import demand elasticities can be represented as: 

m mm m
m m s

sm m

pD S

pM M


     

v vv v
v v s

sv v

pD S

pM M


    . 

If we assume that the ROW soybean supply elasticity is similar to that of the United States, and 

thus put 0.27s  , and that the ROW demand elasticities for meal and oil are also the same as in 

the United States, then, using the variables’ values at the calibrated 2015 year, we find 

1.7m    and 1.4v   . These are the values we assume in our baseline calculations. Note 

that these values imply import demand functions that are quite a bit more elastic than in 

Bekkerman et al. (2012) and Kim et al. (2008), who do not consider the structural representation 

that we have discussed. Our elasticities are similar to the values reported by Piggott and 

Wohlgenant (2002), who again find somewhat more inelastic response than we do (although they 
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pursue a structural representation similar to what we have provided, they assume no foreign 

supply response in their calculations). 

 

A.5.4   Corn market 

For the domestic market, the demand elasticity is assumed to be the same as for meal and 

oil, and thus we assume 0.20cc   .  As for the ROW import demand for US corn, again we start 

with the definition c c cM D S  , from which we obtain: c c
c c c

c c

D S

M M
    , where 

cc
c

c c

pdM

dp M
  . If we assume that supply and demand responsiveness in the ROW are similar to 

those in the United States, and thus put 0.2c    and 0.34c  , then, with variables’ values at 

the 2015 year, we would obtain 7.5c   .  

But the foregoing derivation of import demand elasticities ignores the interaction (cross-

price) effects between corn and soybeans products, for both demand and supply, which we have 

modeled explicitly in the United States. Such interaction effects are likely to lower elasticity 

values for both mutatis mutandi demand and supply functions, as suggested by the aggregate 

analysis of Roberts and Schlenker (2009). Rather than explicitly modeling interactions effects for 

the ROW as well, we take a shortcut and capture those effects by postulating more inelastic 

foreign response functions. For example, if we set the ROW demand and supply elasticities to 

the aggregate levels estimated by Roberts and Schlenker (2009), then using the results of one of 

their preferred specifications (column 2 in their table 3) we would get 0.0554c   and 

0.1337s  . With these values, at the 2015 calibration year, we obtain a ROW import demand 

elasticity for corn of 2.7c   . This is the baseline value we assume in our counterfactual 
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simulations. Note that this value is still considerably more elastic than was assumed in Cui et al. 

(2011). 

 

A.6   Sensitivity Analysis 

To investigate the robustness of the baseline results in Tables 3 and 4 in the main text, we 

carried out five additional sets of sensitivity analysis experiments. For each experiment, a subset 

of parameters are changed to either one-half of the baseline values or to twice the baseline 

values.22 The five sets of experiments, and the associated elasticity values and marginal 

emissions damage, are presented in Table A1. Selected market and welfare results for each 

scenario are reported in Tables S2 to S6. Note that, in these tables, alternative elasticity 

assumptions are reported as having the same status quo market effects: this is simply a reflection 

of the calibration procedure (the parameters corresponding to alternative assumptions are still 

required to be consistent with the benchmark calibration data). This is not true for welfare 

effects, of course, because they represent changes from the corresponding counterfactual of “No 

RFS,” which changes as the assumed elasticities change.  

In Tables S2 to S6 we have highlighted in yellow the figures that differ from the 

corresponding baseline estimates by more than 10%. One set of elasticities that seems to affect 

results the least is that of domestic demands for crop products (experiment A, Table A2). Market 

effects are also very robust for experiments B, C and E (Tables S3, S4 and S6). Assumptions 

about ROW elasticities (experiment D, Table A5) are somewhat more consequential for market 

effects. Not surprisingly, alternative elasticity assumptions also tend to matter more for the 

                                                 
22 For the cross-elasticities of domestic demand functions for crop products, the less (more) elastic scenarios 
correspond to a doubling (halving) of the   parameter. See section A.2 for more details on the relationships 
between  , the elasticity of substitution and the cross-elasticities of demand. 
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“optimal mandates” scenarios than for the “year 2022 mandates” scenarios. Welfare estimates 

are more sensitive to parameter changes than market estimates. ROW elasticities of demand for 

U.S. crop products, and the ROW elasticity of crude oil supply to the United States, are 

especially important for welfare calculations, a reminder of the importance that terms of trade 

effects play in the analysis. U.S. welfare gains are magnified with inelastic ROW responses (see 

the “less elastic” columns in Table A5), and are reduced when ROW responses are more elastic 

(see the “more elastic” columns in Table A5).  In particular, the “more elastic” set of elasticities 

for experiment D are such that the overall welfare gains from U.S. biofuel policies are essentially 

nil. In any event, we note that welfare gains to U.S. farmers are large in any scenario, and that 

the welfare outcomes for the “year 2022 mandates” scenarios are worse than the corresponding 

status quo scenarios for all of the sensitivity analysis experiments carried out. 
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Table A1. Alternative Elasticities/Parameters Used for Sensitivity Analysis Experiments 

A. Domestic Elasticities for Crop Products Demands  
Elasticity of  Symbol Baseline   Less   More 
US corn demand cc   -0.20 -0.10 -0.40 

US soybean meal demand  mm  -0.20 -0.10 -0.40 

US soybean oil demand vv  -0.20 -0.10 -0.40 
Elasticity of substitution parameter  0.5 1.0 0.25 
     US corn demand w.r.t. mp  cm  0.065 0.00 0.194 

     US corn demand w.r.t. vp  cv  0.014 0.00 0.042 

     US soy meal demand w.r.t. vp  mv  0.014 0.00 0.042 

B. Domestic Elasticities for Crop Supplies 
Elasticity of  Symbol Baseline   Less   More 
US corn acreage supply L

cc   0.29 0.145 0.58 

US corn acreage supply w.r.t. sp    L
cs  -0.22 -0.11 -0.44 

US soybean acreage supply L
ss  0.26 0.13 0.52 

US corn yield supply y
cc  0.05 0.025 0.10 

US soybean yield supply y
ss  0.01 0.005 0.02 

C. Domestic Elasticities for Petroleum Products Demands and Crude Oil Supply 
Elasticity of  Symbol Baseline   Less   More 
US gasoline fuel demand gg -0.35 -0.175 -0.70 

US diesel fuel demand dd  -0.15 -0.075 -0.30 

US petroleum byproducts demand hh  -0.50 -0.25 -1.00 

US crude oil supply R   0.25 0.125 0.50 

D. ROW Elasticities for Crop Products Import Demands and Crude Oil Export Supply 
Elasticity of  Symbol Baseline   Less   More 
ROW corn import demand cc  -2.70 -1.35 -5.40 
ROW soybean meal import 
demand mm  -1.70 -0.85 -3.40 

ROW soybean oil import demand vv  -1.40 -0.70 -2.80 

ROW crude oil export supply R   4.40 2.20 8.80 

ROW crude oil demand R  -0.20 -0.10 -0.40 

E. Marginal Emissions Damages ($/tCO2): Baseline (  =20); Smaller (  =10); Larger ( 
=40) 
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Table A2. Sensitivity Analysis for: A. Domestic Elasticities for Crop Products Demands 
 Baseline elasticities Less elastic  More elastic  

Market Effects 
Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Cellulosic biofuel mandate (B units) 0.123 0.787  0.123 0.787  0.123 0.787  
Advanced biofuel mandate (B units) 2.880 5.787 1.661 2.880 5.787 1.671 2.880 5.787 1.646 
Renewable biofuel mandate (B units) 16.930 20.787 19.351 16.930 20.787 19.144 16.930 20.787 19.735 

Corn price ($/bu.) 3.68 3.88 3.96 3.68 3.88 3.97 3.68 3.87 3.96 
Soybean price ($/bu.) 10.10 11.14 9.69 10.10 11.14 9.67 10.10 11.15 9.73 

Soybean meal price ($/ton) 368.49 363.28 369.23 368.49 361.39 369.09 368.49 366.50 369.58 
Soybean oil price (¢/lb.) 31.60 41.83 27.87 31.60 42.18 27.72 31.60 41.23 28.17 
Crude oil price ($/bbl) 48.40 48.00 48.33 48.40 48.00 48.34 48.40 48.00 48.31 
Gasoline price ($/gal.) 1.72 1.74 1.60 1.72 1.74 1.61 1.72 1.74 1.59 
Diesel price ($/gal.) 1.67 1.50 1.92 1.67 1.50 1.91 1.67 1.49 1.94 

Ethanol price ($/gal.) 1.61 1.67 1.68 1.61 1.67 1.68 1.61 1.66 1.68 
Biodiesel (supply) price ($/gal.) 3.65 4.43 3.36 3.65 4.46 3.35 3.65 4.39 3.39 
RIN price for ethanol ($/unit) 0.49 0.50 0.64 0.49 0.50 0.64 0.49 0.49 0.64 

RIN price for biodiesel ($/unit) 0.73 1.99 1.03 0.73 2.00 1.03 0.73 1.96 1.04 

Ethanol quantity (B gal.) 14.140 15.104 17.778 14.140 15.167 17.561 14.140 15.167 18.177 
Blending ratio of ethanol (%) 9.871 10.652 12.140 9.871 10.692 12.005 9.871 10.691 12.388 

Biodiesel quantity (B gal.) 1.779 3.275 1.049 1.779 3.275 1.055 1.779 3.275 1.039 

Corn production (B bus.) 14.216 14.156 14.716 14.216 14.163 14.725 14.216 14.146 14.697 

Soybean production (B bus.) 3.927 3.975 3.796 3.927 3.973 3.793 3.927 3.977 3.802 

Corn export (B bus.) 1.833 1.564 1.450 1.833 1.558 1.448 1.833 1.571 1.456 

Soybean meal export (M ons) 56.572 57.932 56.378 56.572 58.426 56.417 56.572 57.093 56.288 

Soybean oil export (B lbs.) 22.421 12.261 26.124 22.421 11.914 26.280 22.421 12.858 25.826 

Crude oil domestic supply (B bbl) 3.450 3.443 3.449 3.450 3.443 3.449 3.450 3.443 3.448 

Crude oil import (B bbl) 2.907 2.800 2.888 2.907 2.800 2.890 2.907 2.801 2.883 

Social welfare ($ B) 3.421 -1.053 4.316 3.656 -0.924 4.534 3.076 -1.231 4.001 

  P.S. Agriculture ($ B) 15.891 23.753 16.209 16.424 24.315 16.735 15.050 22.888 15.314 

GHG emissions change (M tCO2e) 5.21 -21.30 18.91 5.13 -21.30 18.34 5.33 -20.75 19.84 
Note: Welfare Impacts are changes relative to the relevant “No RFS” scenario. Yellow highlight denotes figures that differ from the corresponding 
baseline estimates by more than 10%. 
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Table A3. Sensitivity Analysis for: B. Domestic Elasticities for Crop Supplies 
 Baseline elasticities Less elastic More elastic  

Market Effects 
Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Cellulosic biofuel mandate (B units) 0.123 0.787  0.123 0.787  0.123 0.787  
Advanced biofuel mandate (B units) 2.880 5.787 1.661 2.880 5.787 1.864 2.880 5.787 1.354 
Renewable biofuel mandate (B units) 16.930 20.787 19.351 16.930 20.787 18.716 16.930 20.787 20.102 

Corn price ($/bu.) 3.68 3.88 3.96 3.68 3.87 3.97 3.68 3.88 3.93 
Soybean price ($/bu.) 10.10 11.14 9.69 10.10 11.21 9.66 10.10 11.05 9.75 

Soybean meal price ($/ton) 368.49 363.28 369.23 368.49 364.89 366.58 368.49 360.88 373.75 
Soybean oil price (¢/lb.) 31.60 41.83 27.87 31.60 42.04 28.16 31.60 41.52 27.43 
Crude oil price ($/bbl) 48.40 48.00 48.33 48.40 48.00 48.34 48.40 48.00 48.31 
Gasoline price ($/gal.) 1.72 1.74 1.60 1.72 1.74 1.63 1.72 1.74 1.57 
Diesel price ($/gal.) 1.67 1.50 1.92 1.67 1.50 1.87 1.67 1.50 1.99 

Ethanol price ($/gal.) 1.61 1.67 1.68 1.61 1.66 1.69 1.61 1.67 1.67 
Biodiesel (supply) price ($/gal.) 3.65 4.43 3.36 3.65 4.45 3.39 3.65 4.41 3.33 
RIN price for ethanol ($/unit) 0.49 0.50 0.64 0.49 0.49 0.63 0.49 0.50 0.64 

RIN price for biodiesel ($/unit) 0.73 1.99 1.03 0.73 2.00 1.08 0.73 1.97 0.96 

Ethanol quantity (B gal.) 14.140 15.104 17.778 14.140 15.167 16.940 14.140 15.167 18.836 
Blending ratio of ethanol (%) 9.871 10.652 12.140 9.871 10.692 11.626 9.871 10.691 12.778 

Biodiesel quantity (B gal.) 1.779 3.275 1.049 1.779 3.275 1.184 1.779 3.275 0.844 

Corn production (B bus.) 14.216 14.156 14.716 14.216 14.171 14.473 14.216 14.152 15.083 

Soybean production (B bus.) 3.927 3.975 3.796 3.927 3.955 3.859 3.927 4.003 3.700 

Corn export (B bus.) 1.833 1.564 1.450 1.833 1.574 1.445 1.833 1.564 1.500 

Soybean meal export (M ons) 56.572 57.932 56.378 56.572 57.513 57.072 56.572 58.558 55.200 

Soybean oil export (B lbs.) 22.421 12.261 26.124 22.421 12.054 25.839 22.421 12.566 26.565 

Crude oil domestic supply (B bbl) 3.450 3.443 3.449 3.450 3.443 3.449 3.450 3.443 3.448 

Crude oil import (B bbl) 2.907 2.800 2.888 2.907 2.800 2.892 2.907 2.801 2.884 

Social welfare ($ B) 3.421 -1.053 4.316 3.988 -0.403 4.728 2.693 -1.938 3.806 

  P.S. Agriculture ($ B) 15.891 23.753 16.209 18.012 26.009 18.650 13.392 20.900 12.871 

GHG emissions change (M tCO2e) 5.21 -21.30 18.91 4.98 -21.32 15.56 5.44 -20.81 23.62 
Note: Welfare Impacts are changes relative to the relevant “No RFS” scenario. Yellow highlight denotes figures that differ from the corresponding 
baseline estimates by more than 10%. 



www.manaraa.com

 

 
 

78 

Table A4. Sensitivity Analysis for: C. Domestic Elasticities for Petroleum Products Demands and Crude Oil Supply 
 Baseline elasticities Less elastic  More elastic  

Market Effects 
Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Cellulosic biofuel mandate (B units) 0.123 0.787  0.123 0.787  0.123 0.787  
Advanced biofuel mandate (B units) 2.880 5.787 1.661 2.880 5.787 1.764 2.880 5.787 1.624 
Renewable biofuel mandate (B units) 16.930 20.787 19.351 16.930 20.787 20.330 16.930 20.787 18.600 

Corn price ($/bu.) 3.68 3.88 3.96 3.68 3.88 4.05 3.68 3.88 3.90 
Soybean price ($/bu.) 10.10 11.14 9.69 10.10 11.14 9.76 10.10 11.14 9.66 

Soybean meal price ($/ton) 368.49 363.28 369.23 368.49 363.28 368.63 368.49 363.28 369.63 
Soybean oil price (¢/lb.) 31.60 41.83 27.87 31.60 41.83 28.60 31.60 41.83 27.49 
Crude oil price ($/bbl) 48.40 48.00 48.33 48.40 48.03 48.28 48.40 47.94 48.35 
Gasoline price ($/gal.) 1.72 1.74 1.60 1.72 1.80 1.46 1.72 1.71 1.67 
Diesel price ($/gal.) 1.67 1.50 1.92 1.67 1.31 2.22 1.67 1.59 1.78 

Ethanol price ($/gal.) 1.61 1.67 1.68 1.61 1.67 1.71 1.61 1.67 1.66 
Biodiesel (supply) price ($/gal.) 3.65 4.43 3.36 3.65 4.43 3.42 3.65 4.43 3.34 
RIN price for ethanol ($/unit) 0.49 0.50 0.64 0.49 0.46 0.75 0.49 0.52 0.58 

RIN price for biodiesel ($/unit) 0.73 1.99 1.03 0.73 2.10 0.88 0.73 1.93 1.10 

Ethanol quantity (B gal.) 14.140 15.104 17.778 14.140 15.167 18.654 14.140 15.167 17.064 
Blending ratio of ethanol (%) 9.871 10.652 12.140 9.871 10.672 12.686 9.871 10.730 11.697 

Biodiesel quantity (B gal.) 1.779 3.275 1.049 1.779 3.275 1.117 1.779 3.275 1.024 

Corn production (B bus.) 14.216 14.156 14.716 14.216 14.156 14.809 14.216 14.156 14.637 

Soybean production (B bus.) 3.927 3.975 3.796 3.927 3.975 3.776 3.927 3.975 3.814 

Corn export (B bus.) 1.833 1.564 1.450 1.833 1.564 1.333 1.833 1.564 1.542 

Soybean meal export (M ons) 56.572 57.932 56.378 56.572 57.932 56.536 56.572 57.932 56.275 

Soybean oil export (B lbs.) 22.421 12.261 26.124 22.421 12.261 25.401 22.421 12.261 26.506 

Crude oil domestic supply (B bbl) 3.450 3.443 3.449 3.450 3.447 3.449 3.450 3.434 3.448 

Crude oil import (B bbl) 2.907 2.800 2.888 2.907 2.809 2.875 2.907 2.786 2.895 

Social welfare ($ B) 3.421 -1.053 4.316 4.922 0.248 6.246 2.620 -1.829 3.317 

  P.S. Agriculture ($ B) 15.891 23.753 16.209 14.200 23.543 13.568 16.729 23.862 17.077 

GHG emissions change (M tCO2e) 5.21 -21.30 18.91 8.61 -13.00 24.42 -1.59 -37.18 9.49 
Note: Welfare Impacts are changes relative to the relevant “No RFS” scenario. Yellow highlight denotes figures that differ from the corresponding 
baseline estimates by more than 10%. 
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Table A5. Sensitivity Analysis for: D. ROW Elasticities for Crop Products Import Demands and Crude Oil Export Supply 
 Baseline elasticities Less elastic  More elastic 

Market Effects 
Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Cellulosic biofuel mandate (B units) 0.123 0.787  0.123 0.787  0.123 0.787  
Advanced biofuel mandate (B units) 2.880 5.787 1.661 2.880 5.787 2.711 2.880 5.787 1.117 
Renewable biofuel mandate (B units) 16.930 20.787 19.351 16.930 20.787 24.150 16.930 20.787 15.832 
Corn price ($/bu.) 3.68 3.88 3.96 3.68 4.05 4.62 3.68 3.78 3.70 
Soybean price ($/bu.) 10.10 11.14 9.69 10.10 11.93 10.69 10.10 10.66 9.69 

Soybean meal price ($/ton) 368.49 363.28 369.23 368.49 356.68 370.47 368.49 366.22 369.23 
Soybean oil price (¢/lb.) 31.60 41.83 27.87 31.60 50.12 36.33 31.60 37.01 27.83 

Crude oil price ($/bbl) 48.40 48.00 48.33 48.40 47.62 47.60 48.40 48.20 48.49 
Gasoline price ($/gal.) 1.72 1.74 1.60 1.72 1.73 1.53 1.72 1.75 1.64 
Diesel price ($/gal.) 1.67 1.50 1.92 1.67 1.49 1.95 1.67 1.50 1.90 

Ethanol price ($/gal.) 1.61 1.67 1.68 1.61 1.72 1.87 1.61 1.64 1.61 
Biodiesel (supply) price ($/gal.) 3.65 4.43 3.36 3.65 5.07 4.01 3.65 4.06 3.36 
RIN price for ethanol ($/unit) 0.49 0.50 0.64 0.49 0.55 0.84 0.49 0.47 0.55 

RIN price for biodiesel ($/unit) 0.73 1.99 1.03 0.73 2.40 1.41 0.73 1.74  

Ethanol quantity (B gal.) 14.140 15.104 17.778 14.140 15.167 21.527 14.140 15.167 14.960 
Blending ratio of ethanol (%) 9.871 10.652 12.140 9.871 10.696 14.538 9.871 10.689 10.311 

Biodiesel quantity (B gal.) 1.779 3.275 1.049 1.779 3.275 1.749 1.779 3.275 0.686 

Corn production (B bus.) 14.216 14.156 14.716 14.216 14.128 15.267 14.216 14.177 14.370 

Soybean production (B bus.) 3.927 3.975 3.796 3.927 4.006 3.698 3.927 3.954 3.877 

Corn export (B bus.) 1.833 1.564 1.450 1.833 1.587 1.202 1.833 1.556 1.779 

Soybean meal export (M ons) 56.572 57.932 56.378 56.572 58.113 56.314 56.572 57.758 56.185 

Soybean oil export (B lbs.) 22.421 12.261 26.124 22.421 13.222 20.074 22.421 11.682 29.916 

Crude oil domestic supply (B bbl) 3.450 3.443 3.449 3.450 3.436 3.436 3.450 3.446 3.452 

Crude oil import (B bbl) 2.907 2.800 2.888 2.907 2.805 2.801 2.907 2.799 2.953 

Social welfare ($ B) 3.421 -1.053 4.316 9.501 6.505 11.639 -0.728 -6.041 2.502 

  P.S. Agriculture ($ B) 15.891 23.753 16.209 25.914 39.201 39.115 8.627 13.250 5.821 

GHG emissions change (M tCO2e) 5.21 -21.30 18.91 5.25 -23.08 13.05 4.71 -20.37 20.57 
Note: Welfare Impacts are changes relative to the relevant “No RFS” scenario. Yellow highlight denotes figures that differ from the corresponding 
baseline estimates by more than 10%. 
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Table A6. Sensitivity Analysis for:  E. Marginal Emissions Damages (  ) 

 Baseline value  Smaller value Larger value 

Market Effects 
Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Year 2015 
Mandates 

Year 2022 
Mandates 

Optimal 
Mandates 

Cellulosic biofuel mandate (B units) 0.123 0.787  0.123 0.787  0.123 0.787  
Advanced biofuel mandate (B units) 2.880 5.787 1.661 2.880 5.787 1.491 2.880 5.787 2.015 
Renewable biofuel mandate (B units) 16.930 20.787 19.351 16.930 20.787 19.444 16.930 20.787 19.150 

Corn price ($/bu.) 3.68 3.88 3.96 3.68 3.88 3.98 3.68 3.88 3.93 

Soybean price ($/bu.) 10.10 11.14 9.69 10.10 11.14 9.62 10.10 11.14 9.84 
Soybean meal price ($/ton) 368.49 363.28 369.23 368.49 363.28 369.48 368.49 363.28 368.72 
Soybean oil price (¢/lb.) 31.60 41.83 27.87 31.60 41.83 27.20 31.60 41.83 29.27 
Crude oil price ($/bbl) 48.40 48.00 48.33 48.40 48.00 48.33 48.40 48.00 48.31 
Gasoline price ($/gal.) 1.72 1.74 1.60 1.72 1.74 1.59 1.72 1.74 1.63 
Diesel price ($/gal.) 1.67 1.50 1.92 1.67 1.50 1.95 1.67 1.50 1.86 

Ethanol price ($/gal.) 1.61 1.67 1.68 1.61 1.67 1.69 1.61 1.67 1.67 
Biodiesel (supply) price ($/gal.) 3.65 4.43 3.36 3.65 4.43 3.31 3.65 4.43 3.47 

RIN price for ethanol ($/unit) 0.49 0.50 0.64 0.49 0.50 0.65 0.49 0.50 0.61 

RIN price for biodiesel ($/unit) 0.73 1.99 1.03 0.73 1.99 0.98 0.73 1.99 1.14 

Ethanol quantity (B gal.) 14.140 15.104 17.778 14.140 15.167 18.041 14.140 15.167 17.223 
Blending ratio of ethanol (%) 9.871 10.652 12.140 9.871 10.692 12.294 9.871 10.692 11.813 

Biodiesel quantity (B gal.) 1.779 3.275 1.049 1.779 3.275 0.935 1.779 3.275 1.285 

Corn production (B bus.) 14.216 14.156 14.716 14.216 14.156 14.759 14.216 14.156 14.626 

Soybean production (B bus.) 3.927 3.975 3.796 3.927 3.975 3.784 3.927 3.975 3.822 

Corn export (B bus.) 1.833 1.564 1.450 1.833 1.564 1.429 1.833 1.564 1.496 

Soybean meal export (M ons) 56.572 57.932 56.378 56.572 57.932 56.313 56.572 57.932 56.512 

Soybean oil export (B lbs.) 22.421 12.261 26.124 22.421 12.261 26.791 22.421 12.261 24.737 

Crude oil domestic supply (B bbl) 3.450 3.443 3.449 3.450 3.443 3.449 3.450 3.443 3.448 

Crude oil import (B bbl) 2.907 2.800 2.888 2.907 2.800 2.889 2.907 2.800 2.884 

Social welfare ($ B) 3.421 -1.053 4.316 3.473 -1.268 4.514 3.317 -0.636 3.974 

  P.S. Agriculture ($ B) 15.891 23.753 16.209 15.891 23.753 15.951 15.891 23.753 16.737 

GHG emissions change (M tCO2e) 5.21 -21.30 18.91 5.21 -21.09 20.66 5.21 -21.09 15.19 
Note: Welfare Impacts are changes relative to the relevant “No RFS” scenario. Yellow highlight denotes figures that differ from the corresponding 
baseline estimates by more than 10%. 
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A.7   Tables for Parameter Values 

Table A7. Technical Coefficients 

Parameter Symbo
l 

Value Source/explanation 

Ethanol production coefficient (gal./bu.) e  2.8 Cui et al. (2011)  
Ethanol by-product replacing corn in feed, as 

fraction of corn used for ethanol  1  0.218 1 0.307×0.71 

Ethanol by-product replacing soy meal in feed, 
as fraction of corn used for ethanol  2  0.003 2  (0.307×0.29)(56/2000)  

Biodiesel production coefficient (gal./lb.) b  0.131 EIA a 

Soybean meal production coefficient (tons/bu.) m  0.024 m  45.1/1,873 b  

Soybean oil production coefficient (lbs./bu.) v  11.425 v 21,399/1,873 b  

Gasoline heat content (mil. BTUs/bbl) 1  5.06 EIA   

Diesel  heat content (mil. BTUs/bbl) 2  5.77 EIA  

Ethanol heat content (mil. BTUs/bbl) 3  3.558 EIA 

Biodiesel heat content (mil. BTUs/bbl) 4  5.359 EIA 
Ethanol energy equivalent coefficient 

(GEEGs/gal.) e  0.703 3 1/e    

Biodiesel energy equivalent coefficient 
(DEEGs/gal.) b  0.929 4 2/b    

Gasoline production coefficient (gal./bbl) g  21.286 g g Rx x   

Diesel production coefficient (gal./bbl) d  9.115 d d Rx x   

Other refined petroleum products production 
coefficient (KEEGs/bbl) h  13.96 42 1.063( ) 0.98g dh       c

“Equivalence value” of RIN generation for 
biodiesel 

  1.5 Schnepf & Yacobucci (2013) 

Fraction of cellulosic ethanol in cellulosic 
biofuel    ce  0.02, 0.10 Assumed d  

Required fraction of ethanol as oxygenate oxy 0.03 Assumed 

Note: a Corresponds to a conversion factor of 7.65 pounds of soybean oil per gallon of biodiesel.  
b Data taken from https://www.ers.usda.gov/data-products/oil-crops-yearbook/   
c The coefficient 1.063 accounts for 6.3% average “refinery yield” gains accrued in 2015, whereas  
0.98 is the weighted average of kerosene energy equivalence for petroleum products in this category. 
d The benchmark value of ce =0.02 is estimated from EPA’s “RIN generation summary” over 2014-2016. 

For the 2022 (and optimal mandates) scenarios we set ce =0.10, consistent with data and discussion 

contained in EPA (2016). 
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Table A8. GHG Emission Rates (kg CO2e/gallon) and Social Marginal Damage 

Parameter Symbol Value Source/explanation 
  Gasoline 

gE  11.831 EPA (2010)  

  Diesel  dE  13.327 EPA (2010)  
  Corn-based Ethanol  

eE  6.572 gE 0.79 e  (EPA 2010) a 

  Sugarcane ethanol  
seE  3.245 gE 0.39 e  (EPA 2010) a 

  Cellulosic biofuel  
ceE  3.328 gE 0.40 e

a 

  Biodiesel  bE  5.332 dE 0.43 b  (EPA 2010) a 

  Other refined petroleum products  hE  9.410 EIA b 
  Crude oil (kg CO2e/bbl) 

 504.67 
Computed from gE , dE  and 

hE   

    

  Marginal emissions damage ($/tCO2)   20.0 
Stern (2007) and Cui et al. 
(2011) 

Notes. a Life-cycle GHG emissions rates per energy unit relative to gasoline and diesel baselines (EPA 
2010, Chapter 2.6). b Weighted average of CO2 emissions rates from various other refined products (see 
text).  
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A.8   Notation Recap 
 
Quantities 
 

cS =  corn production 

sS =  soybean production  

mx =  total quantity of soybean meal produced (from crushing soybeans) 

vx =  total quantity of vegetable (soy) oil produced 

ex  =  domestic production of corn-based ethanol in natural units (gallons) 

bx =  domestic production of biodiesel in natural units (gallons) 

cx = quantity of corn used in ethanol production 

vx = quantity of soybean oil used in biodiesel production 

Rx = domestic and foreign oil supply  

gx = gasoline production  

dx = diesel production  

hx = other refined petroleum products  

ex = ethanol production  

bx = biodiesel production 

gz =  other variable inputs used in the production of gasoline 

vz =  other variable inputs used in the production of vegetable (soybean) oil 

ez = other variable inputs used in the production of ethanol 

bz = other variable inputs used in the production of biodiesel 

cex = domestic production of cellulosic biofuel in natural units (gallons) 

c = Change in corn carryover stocks 

s = Change in soybean carryover stocks 

m = Change in soybean meal carryover stocks 

v = Change in soybean oil carryover stocks 

gX = Net export of gasoline 

dX = Net export of diesel 

hX = Net export of heating oil 

eX = Net export of corn ethanol 

bM = Net import of biodiesel 

seM = Import of sugarcane ethanol 

bN = Biodiesel produced from feedstock other than vegetable oil 
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Prices 

Rp =  price of crude oil  

gp = price of unblended gasoline 

dp = price of unblended diesel 

ep =  price of ethanol in natural units ($/gallon)  

bp =  price of biodiesel in natural units ($/gallon)  

gfp =  demand price of “gasoline fuel” (blended gasoline) 

dfp =  demand price of “diesel fuel” (blended diesel) 

hp =  demand price of other refined petroleum products 

cp =  price of corn 

sp =  price of soybeans 

mp = price of soybean meal 

vp = price of soybean (vegetable) oil  

gw =  price of other inputs used in the production of gasoline and diesel 

ew =  price of other inputs used in the production of corn ethanol 

bw =  price of other inputs used in the production of bio-diesel 

vw = price of other inputs used in the production of soybean oil and meal  

 
 
Technical coefficients 

g = units of gasoline per unit of crude oil (production coefficient) 

d = units of diesel per unit of crude oil (production coefficient) 

h = units of byproduct (heating oil) per unit of crude oil (production coefficient) 

e = units of ethanol per unit of corn (production coefficient) 

m = units of soybean meal per unit of soybean (production coefficient) 

v = units of soybean oil per unit of soybean (production coefficient) 

b = units of biodiesel per unit of soybean oil (production coefficient) 

1 = 
fraction of corn used in ethanol production that is returned as a byproduct that 
substitutes for corn as livestock feed 

2 = 
fraction of corn used in ethanol production that is returned as a byproduct that 
substitutes for soybean meal as livestock feed 

e = units of GEEG ethanol per unit of raw ethanol (energy conversion coefficient) 

b = units of DEEG biodiesel per unit of raw biodiesel (energy conversion coefficient) 
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Policy and RFS variables  

g ft = consumption tax on gasoline fuel  

d ft = consumption tax on diesel fuel 

b = Blending subsidy for biodiesel  

   “equivalent value” of RIN generation applicable to biodiesel 

eR   RIN price for corn ethanol (i.e., renewable fuel D6 RINs), $/unit  

bR   RIN price for biodiesel (D4 RINs), $/unit 

aR   RIN price for advanced biofuel (D5 RINs), $/unit 

ceR   RIN price for cellulosic biofuel (D3 RINs), $/unit 
M
rfx = Total renewable fuel mandate 

M
ax = Total advanced biofuel mandate (in ethanol units) 
M
bx = Biodiesel component of the advanced biofuel mandate (in biodiesel units) 
M
cex = Cellulosic biofuel component of the advance biofuel mandate (in ethanol units) 

rfs   RFS fractional standard for total renewable fuel 

as   RFS fractional standard for advanced biofuel 

bs   RFS fractional standard for biodiesel 

ces   RFS fractional standard for cellulosic biofuel 

   Monetary social cost of GHG emission ($/tCO2e) 

 
 
Abbreviations 

RFS = Renewable Fuel Standard 

EISA = Energy Independence and Security Act 

ROW = Rest of the World 

GEEG = gasoline-energy-equivalent gallon 

DEEG = diesel-energy-equivalent gallon 

KEEG = kerosene-energy-equivalent gallon  
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CHAPTER 3  

U.S. CORN AND SOYBEAN DYNAMIC SUPPLY RESPONSE IN THE RENEWABLE 
FUEL STANDARD ERA  

 

3.1   Introduction 

The Renewable Fuel Standard (RFS), initially established by the 2005 Energy Policy Act, 

and considerably extended by the 2007 Energy Independence Security Act, has introduced a 

sizable new source of demand for corn and soybeans to produce ethanol and biodiesel. Ceteris 

paribus, such an exogenous demand shock would be expected to increase the price of corn and 

soybeans (Cui et al. 2011), and indeed the RFS is credited with being one of the main causes of 

the commodity price increases in the last decade (Hochman et al. 2012, Roberts and Schlenker 

2013, Wright 2014). In addition to contribution to an overall price increase, the biofuel 

expansion appears to have affected the spatial distribution of prices. Ethanol plants 

predominantly located in region with abundant corn supply, and by sourcing the required corn 

they put upward pressure on the local corn price, thereby significantly affecting the basis 

(McNew and Griffith 2005; Fatal and Thurman 2014). The likely presence of these two price 

effects (on the level and the spatial distribution) traceable to a largely exogenous demand 

shock—the biofuel boom driven by RFS mandates—provides an ideal opportunity to revisit the 

econometric analysis of supply response, an object of considerable interest in agricultural 

economics.  

The resurgence of interest in the U.S. agricultural supply response is also motivated by 

the policy implications of the RFS. As noted, the massive expansion of biofuel production in the 

United States has put considerable upward pressure on commodity prices. A major concern is 

that, if the U.S. supply response cannot accommodate such an expanded demand, then land 
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elsewhere in the world may be converted to the production of these commodities. This possible 

indirect land use effect is crucial to evaluate the consequence of the RFS on greenhouse gas 

emission (e.g., Searchinger et al. 2008, Barr et al. 2011, Berry 2011, Berry and Schlenker 2011, 

Roberts and Schlendker 2013, Gohin 2014, Babcock 2015, Haile, Kalkuhl, and von Braun, 

2016). Hence, major economic policy conclusions hinge on whether the U.S. supply response is 

elastic or inelastic. Existing studies are less than conclusive, especially with regard to the yield 

response (Miao, Khanna, and Huang 2016; Hendricks, Smith, and Sumner 2014; Scott 2014).  

In this essay, we study the acreage and yield response for U.S. corn and soybeans. For 

acreage response, the analysis focuses on estimating the short-run and long-run elasticities of 

supply response, including the cross-price elasticities between corn and soybeans and the cross-

acreage dynamic adjustment between them. The cross effects between corn and soybeans is 

emerging as important parameters because the RFS, with conventional ethanol mandates reached 

their statutory maximum, is mandating increasing amounts of biodiesel (which increase the 

demand of vegetable oil and, consequently, of oilseeds) (Moschini, Lapan and Kim 2017). We 

focus on the rainfed producing regions of the Midwest, specifically counties in the following 

twelve states: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North 

Dakoda, Ohio, South Dakoda, and Wisconsin.23 The region that we identify is responsible for 

producing a large share of U.S. output (over the last 10 years it has accounted for 87% of U.S. 

corn and 83% of U.S. soybean production). This consideration, along with the fact that in this 

region corn and soybean production account for a very large share of cropland use, suggest that it 

                                                 
23 These 12 states are categorized together into “Midwest” by U.S. Census Bureau 
(http://www2.census.gov/geo/docs/maps-data/maps/reg_div.txt), which mainly consists of “Heartland” based on 
U.S. Farm Resource Regions by U.S. Department of Agriculture 
(http://www.ers.usda.gov/webdocs/publications/aib760/32489_aib-760_002.pdf). 
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may be key to understand the acreage substitution between these two crops, which is a specific 

motive of interest of this study. To try to exploit the spatial price variation arising from the 

biofuel-induces changes in basis, we use panel data at the county level. Furthermore, the analysis 

of acreage response relies on data for the period 2005-2015. This period fully exploits the price 

changes that we presumed are influenced by the exogenous biofuel expansion. Furthermore, 

focusing on recent data has the advantage of minimizing the impact of unmodeled factors that 

may not hold constant over a longer period of time. In particular, a thorny issue in modeling 

agricultural supply response to price concerns the role that (changing) agricultural price and 

income support policies may have played (Lee and Helmberger 1985, MacIntosh and Shideed 

1989). The period that we use for our analysis has the advantage of minimizing such impacts 

owing to the rarely exercised price support payments (such as loan deficiency, marketing loan 

gains, and certificates) and the stable direct payments.24    

To analyze the dynamic behavior of the acreage response system, we include two—own 

and cross—lagged dependent variables in each of corn and soybean estimation equations. We 

then use a dynamic panel GMM estimator to avoid the possible bias due to the presence of 

lagged dependent variables. In addition to regressors that are presumed exogenous, instrumental 

variables include lagged levels of the dependent variables.  

The results from our baseline model suggest that, due to significant cross-crop dynamics 

between corn and soybeans, the U.S. supply responses for corn and soybeans are larger in the 

                                                 
24 According to the chart provided by Environment Working Group (https://farm.ewg.org/index.php), for the US 
corn and soybeans, by and large there are three major subsidy categories that are actually paid since 2005: direct 
payments, price support payments, and crop insurance premium subsidies (except for counter-cyclical programs in 
2005-2006 for corn). It shows that price-support payments are nearly zero from 2006 for corn and from 2005 for 
soybeans and the direct payments are quite stable since 2005 for both corn and soybeans. But the amount of the crop 
insurance premium subsidies are still fluctuating over time.     
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short run than in the long run. Our baseline model estimates the own-price supply elasticities, at 

the mean point of the data, to be 0.50 for corn and 0.38 for soybeans in the short run (the long-

run counterparts are 0.38 and 0.27, respectively). Most of this responsiveness is due to acreage 

allocation decisions, as we find that the yield supply response to price is minimal. The model 

also identifies cross-price elasticities, which are found to be relatively large: the cross-price 

elasticity between corn and soybeans at the mean is estimated to be -0.31, and that between 

soybeans and corn to be -0.51 in the short run (the long-run counterparts are -0.23 and -0.34, 

respectively). This also implies that, when corn and soybean per-acre revenues move together, 

the response of the total acreage of these two key crops is very small. We estimate this total 

elasticity, at the mean point, to be equal to 0.04 in both the short and long run, which suggest that 

the ability of the U.S. corn and soybean production sector to accommodate the demand shock 

due to the RFS is very limited. Our supply elasticities are generally consistent with the recent 

findings of Hendricks, Smith, and Sumner (2014), but differ somewhat from those reported in 

Miao, Khanna, and Huang (2016).         

 

3.2   Background 

The study of agricultural supply response has traditional decomposed it in terms of 

acreage response and yield response. Studies of acreage responsiveness have relied on a variety 

of model specification. Because the agricultural sector can safely be construed as competitive, 

given suitable aggregation conditions, profit maximization has been relied on theory-consistent 

models (Chambers and Just 1989; Moore and Negri 1992, Moore, Gollehon, and Carey 1994, 

Arnade and Kelch 2007, Fezzi and Bateman 2011, Lacroix and Thomas 2011, Laukkanen and 

Nauges 2014). In these studies, estimation equations are expressed by flexible functional forms 
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such as translog or normalized quadratic, such that the dual approach permits one to maintain the 

standard restrictions that derive from optimization (homogeneity in prices, symmetry, and adding 

up). A distinct family of flexible models that represent supply response in terms of acreage 

shares is the linear logit specifications based on Theil (1969)’s multinomial extension of linear 

logit model (e.g., Bewley, Young and Colman 1987, Wu and Segerson 1995, Miller and 

Plantinga 1999, Carpentier and Letort 2014). Alternatively, acreage responsiveness has been 

approached with more ad hoc models, including plain linear specifications (e.g., Morzuch, 

Weaver and Helmberger 1980, Lee and Helmberger 1985, Shideed and White 1989, Goodwin 

and Mishra 2006; Arnberg and Hansen 2012, Hausman 2012, de Menezes and Piketty 2012, 

Miao, Khanna, and Huang 2016). Some of these studies also differentiate between short and 

long-run behavior, an element of interest in this setting at least since Nerlove (1956) (e.g., 

Arnberg and Hansen 2012, Hausman 2012, de Menezes and Piketty 2012). The dynamics of 

supply can be complex once one explicitly accounts for crop rotational effects, with results that 

depart form the canonical findings of traditional Nerlovian models (Hendricks, Smith and 

Sumner 2014).  

In regard to yield response, the literature often relies on the reduced-form approach using 

simple parametric specifications, with an emphasis on environmental conditions and 

technological conditions as main determinants. When trying to assess whether or not prices have 

a significant impact on yields (conditional on the state of technology), the yield estimating 

equation may include the crop’s own output price (Berry 2011, Berry and Schlenker 2011), both 

input and own output prices (Miao, Khanna, and Huang 2016), a relative price between input and 

own output prices (Houck and Gallagher 1976, Choi and Helmberger 1993a), or a relative price 

between output prices (Goodwin et al. 2012). There have also been efforts to obtain yield 
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elasticities with respect to own and cross-output prices based on dual approaches (Arnade and 

Kelch 2007, Scott 2013).     

The model developed in this essay is consistent with the approach followed in many of 

the aforementioned studies. The presumption is that farmers maximize expected profit, and that 

their aggregate decisions at the county level (our unit of observation) can be thought of as that of 

a representative expected profit maximizer. We explicitly model three land uses: corn, soybeans, 

and everything else. We assume that the acreage shares, which are a function of the price vector, 

can be parameterized by a linear function, an assumption that makes the specification of dynamic 

adjustment tractable and permits the use of standard instrumental variable estimation procedures. 

Our short-run parameterization maintains the symmetry restrictions of profit maximizations (at 

the mean), in addition to the homogeneity property and the adding-up condition. Additionally, 

we maintain symmetry for the dynamic adjustment behavior between corn and soybeans. Our 

analysis focuses on the 12 Midwestern states have consistently produced both corn and soybeans, 

and that account for the vast majority of U.S. production.25 To obtain overall supply elasticities, 

in addition to acreage response, we separately estimate yield response equations for both corn 

and soybeans. These equations account for weather variables and the state of technology, as well 

as the own output price (deflated by input price index).  

Table 3.1 provides a preview of some of our results in the context of findings from 

previous studies. This table focuses on studies that estimated both own and cross price 

elasticities (as noted earlier, several studies did not do that). Only two of the referenced studies 

                                                 
25 Because the counties that enter our sample mostly produce both corn and soybeans, we do not need to address the 
corner solution issue which is one of the main concern in some studies (Moore and Negri 1992, Fezzi and Bateman 
2011, Lacroix and Thomas 2011). 
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estimated both short and long-run elasticities, and the latter are reported with (L). 

Notwithstanding the difficulty of comparing estimates from studies that differ in scope, data and 

methods, four observations appear in order. First, in most cases corn and soybeans turn out to be 

substitutes, in accordance with what one should expect when the jointness arises because of an 

allocatable fixed input (land). Second, in studies conducted before 2000, roughly speaking, the 

own- and cross-price elasticities for corn tend to be smaller than equal to those of soybeans, in 

absolute value, while this feature seems absent in more recent studies. Third, the absolute 

magnitudes of elasticities are larger after 2000. Lastly, our short- and long-run values are very 

similar to those in Hendricks, Smith, and Sumner (2014), except for somewhat increased acreage 

responses for corn both in the short and long terms. 

The magnitude of the estimate response of yields to crop prices has been somewhat 

controversial. Berry and Schlenker (2011), using U.S. state-level data over 1961-2009, argue that 

the yield price elasticities of US crops are no higher than 0.1. Analyzing years from 1980, Scott 

(2013) obtains the upper bounds of U.S. corn and soybean yield elasticities as 0.04 and 0.11, 

respectively, based on his indirect approach. Meanwhile, Goodwin et al. (2012) estimate the 

yield response with respect to their inter-seasonal price (the average harvest-time futures prices 

in February) to be in the range 0.19-0.27 (for IN, IL, and IA over 1996-2010). They also find 

small but significant intra-seasonal yield response (i.e., yield response in early growing season). 

Miao, Khanna, and Huang (2016), focusing on rainfed counties (east of the 100th meridian) over 

1977-2007, obtain a relatively large and statistically significant corn yield price elasticities of 

0.23, while the elasticity of soybean yield response at the mean is found to be 0.04 and 
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statistically not significantly different from zero.26 Our results, discussed later, suggest very 

small yield price elasticities (0.01 for corn and -0.0004 for soybeans) that are not significantly 

different from zero.   

 

3.3   The Model 

Consider a representative farmer’s expected profit maximization problem where land is a 

fixed but allocatable input. Notionally, the expected output vector can be represented as  q l y

, where 1 2( , ,..., )Kq q qq  is the vector of expected outputs, 1 2( , ,..., )Kl l ll  is a vector of acreage 

allocations and 1 2( , ,..., )Ky y yy  is the vector of expected yield. Our strategy is to estimate 

acreage and yield responses separately. A given amount of land a  (total cropland) is allocated to 

K  crops based on expectations of prices and yield. In addition to land, production is assumed to 

be constrained by a vector of quasi-fixed factors (or environmental conditions) z . Also, p  

denotes the vector of expected output prices, r denotes the vector of per-acre expected revenues, 

and w represents the vector of variable input prices.  

 

3.3.1   Acreage response  

For a workable econometric specification, we assume that observed county-level land 

allocations can be represented in terms of the expected profit maximization problem of a 

representative farmer.27 Let kits  denote the acreage share to crop k  in county i  at time t . We 

                                                 
26 The soybean elasticity, which they actually do not report in the main text, is calculated based on the coefficient 
under Model III in Table S1 in the supplementary document. 
27 We assume that the potential bias of aggregated data due to sampling and measurement errors during the data 
generating process is not correlated with our explanatory variables, following Miller and Plantinga (1999).  
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consider three agricultural land uses: corn ( 1k  ), soybeans ( 2k  ), and other crops ( 3k  ). As 

for the input side, given the paucity of detailed information, we represent the effect of input 

prices with a single price variable tw . In county i  at time t , a representative agent makes 

allocations of total land ia  to the three crops, based on expected per-acre revenues kitr  and a 

joint cost function: 

 
1 2 3

3

1 1 2 2 3 3 1 2 3
, , 1

max ( , , ; , , ) . . 1
it it it

it it it it it it i it it it i it it kit
s s s k

s r s r s r a C s s s a w s t s


   z   .  

Because the cost function 1 2 3( , , ; , , )it it it i it itC s s s a w z is homogeneous of degree one in input prices, 

the objective function is homogeneous of degree one in 1itr , 2itr , 3itr , and tw , implying 

optimal allocations are homogeneous of degree zero in 1itr , 2itr , 3itr , and tw . The property of 

homogeneity can be maintained at the outset by expressing monetary variables as ratios (relative 

to one of variables). We choose the general input price as the deflator, and thus use the following 

expected per-acre revenues in the equations: kit kit tr r w   ( 1, 2 , 3k  ). The cost function 

1 2 3( , , ; , , )it it it i it itC s s s a w z here captures the motive for acreage diversification (e.g., Carpentier and 

Letort, 2014). We assume that this cost function homogeneous of degree one in total acreage ia . 

Hence, having maintained the price homogeneity condition, and given the acreage constraint (

1 2 3 1it it its s s   ), the problem can be re-stated as:  

 
1 2

1 3 1 2 3 2 3 1 2
,

max ( ) ( ) ( , ; )
it it

it it it it it it it it it it
s s

r r s r r s r C s s     z . 

Solving the optimality conditions, optimal acreage allocations can be written as 

(1)  *
1 3 2 3( ),( ),kit kit it it it it its s r r r r   z  for 1, 2k  , 

for county i  in time t (and, of course, and * * *
3 1 21it it its s s   ). 
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For the purpose of specifying the econometric model, observed acreage shares can be 

written as *
kit kit kits s   . Importantly, we permit the conditioning variable itz  to include own 

and cross lagged shares, 1 1its   and 2 1its  , thereby providing a vehicle to capture the dynamic 

effects on acreage allocation implied by crop rotation. The set of conditioning variables also 

includes environmental variables such as spring water stress (Palmer Indices in March, April and 

May), denoted itz , which may directly affect planting decisions. By postulating a linear 

functional form for the optimal share functions in equation (1), and by imposing symmetry in 

per-acre revenues (see Appendix B.1) and symmetry in lagged shares, the acreage allocation 

equations for corn and soybeans can be written as:   

(2)  1 1 11 1 3 12 2 3 11 1 1 12 2 1 1 1( )it i it it it it it it it its r r r r s s               ζ z ; 

(3)  2 2 12 1 3 22 2 3 12 1 1 22 2 1 2 2( )it i it it it it it it it its r r r r s s               ζ z . 

To make equations (2) and (3) actually estimable, we further assume that the 

(normalized) expected per-acre revenue can be expressed as follows:  

(4) kit kit kit kir p y v   for 1, 2 , 3k  ,  

where kitp  is the expected output price and kity  is the expected yield; kiv  is the covariance of 

realized price and yield for crop k  in county i . (Recall that, for two random variables 1  and 2 , 

1 2 1 2 1 2[ ] [ ] [ ] cov( , )          ) Note that the county-specific covariance term is assumed to be 

time-invariant. Also, the expected local (county-specific) price is not observed. Following 

standard practice, this expected local price can be decomposed as kit kt kip p   , where ktp  is a 

national reference expected price (which, as explained later, we measure by the futures price) 

and ki  is the expected local basis. For tractability, this county-specific and crop-specific basis is 
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assumed to be time invariant—apart from the effects of the expansion of ethanol plants, which 

we modeled separately. Denoting the product of the national expected reference price and the 

local expected yield as kit kt kitr p y , we can express expected per-acres revenues in equation (4) 

as follows: 

(5) kit kit ki kit kir r y v     for 1, 2 , 3k  . 

A stylized fact of agricultural productivity is that expected crop yields have steadily 

trended upward since the mid 1930s, a reflection of technical progress ultimately due to public 

and private investments in research and development activities (Alston et al. 2010). Our 

analytical framework permits us to capture the effect of trending yields on crop allocation 

decision. As discussed in more detail later, expected yields have a common linear trend and 

county-specific intercepts, and the estimated expected yields will be fully reflected in the kitr  

regressors. But, given the structure of equation (5), trending yields should also interact with the 

basis term ki , implying the presence of county-specific trend effects. The fact that the terms 

ki  are unobserved makes it difficult to identify these local effects. Still, to capture at least the 

mean of these implied trends, we include a common time trend in each estimating share 

equations.  

One of the motivating factors for this study is that the expansion of biofuel production 

due to the RFS has represented a major exogenous demand shock that, in the logic of our model, 

is captured by movements in the expected national price. But it is also important to note that 

biofuel production has local impacts. In particular, the spread of ethanol plants has created new 

local centers of corn demand that have the potential to affect the local market. To account for this 

feature of the problem, we include and “ethanol pressure” variable, denoted itE , in the supply 
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response equations. This variable, the construction of which is detailed later, measure the extent 

to which a county’s corn production is likely to be used locally as the feedstock of ethanol local 

plants.  

In conclusion, therefore, we end up with the following two estimating equations:   

(6) 1 1 11 1 12 2 11 1 1 12 2 1 1 1 1 1it i it it it it it it t its s s E T                   ζ z ; 

(7) 2 2 12 1 22 2 12 1 1 22 2 1 2 2 2 2it i it it it it it it t its s s E T                   ζ z . 

where  3 , 1,2kit kit itr r k     represent relative expected per-acre revenues. The county-

specific fixed components of the basis and the covariance between price and yields—beyond 

those captured by the time trend and ethanol pressure variables—are absorbed by the county-

specific intercepts ki .  The system of equations (6) and (7) can be expressed in a vector 

notation as follows: 

(8) 1it i it it it it     s α Bπ Γs ψ x ε  

where its  is the 2×1 vector of shares; iα  is the 2×1 vector of constants; itπ  is the 2×1 vector of 

relative per-acre revenues; itx  is the 5×1 vector of ethanol pressure, Palmer Indices in March, 

April and May, and time trend; and  

11 12

12 22

 
 
 

  
 

B  and 11 12

12 22

 
 
 

  
 

Γ . 

One of our main interests is to understand the dynamic adjustment within the share system and 

obtain short-run and long-run parameters regarding per-acre revenues. In equation (8) the 

parameters of the matrix B  determine the short-run acreage elasticities w.r.t. per-acre revenue. 

The long-run parameters can be obtained by the matrix   1I Γ B . 
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For the acreage model considered, we have three cropland uses and four price-related 

variables (three per-acre revenues and one input price), thereby having twelve elasticities to 

estimate for the short run and for the long run, respectively. For short-run elasticities, based on 

equation (8), we estimate three price-related parameters in a system of two equations, which 

permit us to estimate directly four of these elasticities ( km  for 1, 2k   and for 1, 2m  ). The 

remaining eight elasticities are computed by exploiting the theoretical restrictions for adding-up, 

symmetry and homogeneity, we are able to calculate the rest of elasticities as follows: 

(9) 1 2
3 1 2

3 3
k k k

s s

s s
     ,  for 1, 2 , 3k    (adding-up);  

(10) 3 3
3 3k k

k k

s r

r s
     for 1, 2k   (symmetry); 

(11) 
3

1
kw k 


  


,   for 1, 2 , 3k    (homogeneity),  

where kw  means the acreage elasticity for crop k  w.r.t. the input price index. Because all 

elasticities are evaluated at the mean of the relevant variables,28 the share values used in (9), (10) 

and (11) are also evaluated at the mean point. A similar procedure is used to computed long run 

elasticities, based on the long-run estimated coefficients   1I Γ B .   

The empirical implementation of this framework has to deal with the problem that the 

“other crops” aggregate is heterogeneous across counties, both in terms of the types of land uses 

(other than corn and soybeans) that might be considered by farmers, and the acreage extent of 

                                                 
28 Perhaps the obvious evaluation point for these elasticities is the mean point of the local per-acre revenues kitr . 

Because of the unobserved component of the basis and price-yield covariance, however, we evaluate the elasticities 

at the mean point of the variables kitr  defined earlier.  
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these other crops. It is therefore not obvious how the relevant expected per-acre revenue for this 

aggregate should be constructed. Recognizing the issue in measuring other crop variables, the 

proxy for the per-acre revenue of other crops that we consider is an index of expected revenues 

of wheat, alfalfa and sorghum (the three most common crops, other than corn and soybeans, for 

the set of counties we consider). We simply assume that for the other crop category the 

covariance term for the expected pre-acre revenue is zero. Details on the constructions of 

expected per-acre revenue are provided in the data section below. Given this proxy for the 

expected per-acre revenue of other crops, we construct relative per-acre revenues. 

 

3.3.2   Endogeneity issues  

A standard concern in the econometric estimation of supply equations involves 

identification and the potential problem of endogenous prices. Given the presumption that the 

large price increases experienced in the period under consideration were triggered by exogenous 

demand shifts, including the major role played by the gradual implementation of the RFS, we 

believe that the potential endogeneity problem is not a major concern in our analysis. The 

remaining subtle issue concerns the futures prices. Since Gardner (1976) suggested to use the 

futures price as a measure of the expected price, the endogeneity issue has been raised (e.g., Choi 

and Helmberger 1993b). The rationale of such endogeneity is predicated on the possibility that 

farmers may be partially aware of forthcoming supply shocks at decision time, thereby changing 

their planting area accordingly, which in turn may affect futures prices. When the predictable 

supply shocks are (usually negatively) correlated with decision-time futures prices, omitting such 

predictable components from the estimating equation induces correlations between the price 

variable and the error term and thereby causes endogeneity bias.  
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There have been efforts to deal with the foregoing endogeneity problem. The crux of the 

matter concerns how predictable weather shocks affect planting decisions, thereby affecting 

expected price. In the context of an aggregate global caloric supply, it is shown that such 

endogeneity can be treated by instrumenting price with past weather shocks (Roberts and 

Schlenker 2013), or simply by including current realized shocks as a proxy for predictable 

shocks (Hendricks, Janzen, and Smith 2015). In this essay, however, our focus is on U.S. county-

level supply behavior, and the logic of the foregoing papers does not seem to apply. Therefore, 

similar to Hendricks, Smith, and Sumner (2014), we assume that the national expected prices, 

which are actually future prices, are exogenous. 

 

3.3.3   Estimation 

Simple ordinary least-square (OLS) estimators of the system of equation in (8) are known 

to be problematic because unobserved county-specific heterogeneity tends to be correlated with 

lagged dependent variables. For example, a severe negative county-specific random shock 

resulting in a low corn acreage share—given the short time frame of our panel data—may be 

confounded with the estimated county-specific intercept. Then, including last year’s low corn 

shares in current period corn equation may cause positive correlation between the lagged 

dependent variable with the county-specific heterogeneity in the error term. As a result, the 

coefficient of own lagged dependent variable is overestimated (upward bias). Thus we need to 

control the unobserved county-specific heterogeneity to deal with the endogeneity from the 

omitted variable bias. 

 To control for the time-invariant, county-specific unobserved heterogeneity, an 

immediate option is to use the within-groups estimator (i.e., individual fixed effects estimator) by 
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de-meaning variables (e.g., by introducing county-specific dummy variables). When using the 

within-groups estimator, however, the coefficient estimates of own lagged dependent variables 

tend to be biased downward because the error term contains the information of demeaned lagged 

shares (Nickell 1981). Another way to control the unobserved heterogeneity is to take first 

differences, which, from equation (8), yields following system:    

(12) 1it it it it it         s B π Γ s ψ x ε . 

Although the county-specific heterogeneity is eliminated without causing the bias identified by 

Nickell (1981), equation (12) is still subject to correlation between lagged shares and error terms 

because both have 1t   terms: , 1ki ts   in , 1ki ts   and , 1mi t   in mit  for 1, 2k   and 1, 2m  . 

Because the own lagged shares are negatively correlated with corresponding error terms (the 

case of k m ), the OLS estimates on the own lagged shares are biased downward.  

Note that for own lagged dependent variables, the level equation OLS estimator and the 

within-groups estimator are biased in opposite directions, and so are the level equation OLS 

estimator and the differenced equation OLS estimator. One would expect that a candidate of 

good estimates on own lagged shares will lie between those bounds, or at least not too higher 

than the level equation OLS estimator or not too lower than the within-groups estimator (or than 

the differenced equation OLS estimator). For the cross lagged shares, the direction of bias would 

be opposite if there are negative cross equation correlations.  

To account for the endogeneity in the differenced equation, it has been proposed to 

instrument endogenous regressors with their lagged values. Anderson and Hsiao (1982) suggest 

to use one period lagged levels (or differences) as instruments and run two-stage least squares 

estimator (if there is no serial correlation in error term), where lagging causes loss in 
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observations. Holtz-Eakin, Newey and Rosen (1988) and Arellano and Bond (1991) point out 

that there will be efficiency gains from the Anderson-Hsiao estimator by utilizing a wider set of 

available instruments under the GMM framework (called as difference GMM estimator). 

Specifically, each available lagged level in a time period can constitute an instrument, where 

other data points are replaced by zeros (hence, no further loss in observations after first 

differencing). There is a potential weakness of difference GMM such that the lagged levels 

becomes poor instruments for first differenced variables, especially when the coefficients of 

lagged variables are close to one (the case of random walk). Given that under certain initial 

conditions differences can also be instruments to estimate equations in levels, Arellano and 

Bover (1995) and Blundell and Bond (1998) suggest to estimate equations in levels along with 

the equations in differences as a system (called as system GMM estimator).29  

We use the difference GMM estimator. Although the foregoing differenced equation 

estimators have been developed for single equation models, we can extend them to the two-

equation system of interest here. To implement this estimator, we use two types of moment 

weighting matrices. The first matrix reflects the MA(1) feature of differenced errors and assumes 

homoscedasticity and no cross equation correlation, resulting in the one-step GMM estimator. 

The other matrix allows heteroscedasticity and cross-equation correlation by utilizing residuals 

from the one-step estimator, resulting in the two-step GMM estimator. Whereas two-step 

estimator improves the efficiency from the one-step estimator in the case of a complicated error 

                                                 
29 Alternative to those estimators based on first-differencing is the bias-corrected fixed effects estimator (Kiviet 
1995, Bun and Carree 2005), which basically estimates the size of bias based on a preliminary GMM estimator and 
subtract it from fixed effects estimates. Attanasio, Picci and Scorcu (2000) suggest to use such estimator when the 
number of time periods in the data is large enough. For example, Hausman (2012) applies the bias-corrected within-
group estimator to estimate the acreage response in Brazil using data over 1973-2005. Bruno (2005) finds that the 
bias-corrected within-group estimator outperforms alternative first-differencing estimators when the number of 
individual groups is small.       
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structure, it is subject to the downward bias in the computed standard errors, especially in small 

samples (Arellano and Bond 1991).30 For comparison purposes, we report both results.  

The remaining issue is the choice of instruments. Basically, any lagged level is valid for 

constructing an instrument as long as it is lagged sufficiently to handle the existing serial 

correlation in the error term. But this proliferation of possible instruments is unattractive because 

too many instruments overfit the endogenous variables and in turn preserve the bias (Roodman 

2009a). The possible remedies are two-fold (Roodman 2009b): i) collapsing the instrument 

matrix so that each lag generates only one instrument per endogenous variable, and ii) excluding 

longer lags from instruments. Both treatments are used for our instruments. To delimit valid lags, 

we check the serial correlation on the error term by regressing residuals on each of their lags as 

discussed in Wooldridge (2010, pp. 319-320) (see Drukker 2003 for the test performance). 

Because the equation is first-differenced, the residual tend to display properties of a MA(1) 

process. Hence, we expect negative correlation in the first lagged residual, and so to uncover 

correlation in the levels it is most meaningful to check twice-lagged residuals. For example, if 

the estimated coefficient of twice-lagged residual is significant, we can infer that there is first 

order serial correlation in levels, and then for share variables third and higher lagged levels are 

valid for instruments.     

   

  

                                                 
30 Windmeijer (2005) proposes the correction of this bias, while we do not implement it in this paper. 
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3.3.4   Yield response 

We postulate simple linear equations for yield response following the literature reviewed 

earlier. To be specific, the expected yield for crop k , county i  at time t  is modeled as follows: 

(13) ( )
y y

kit kit k it kki ky p m t     ξ ω , for { , }k c s ,  

where itω  includes weather variables (heat and water stress) that are all county and time 

specific, and ( )mt  is a trend term that captures exogenous technological progress (either a linear 

trend, of a more flexible spline with two knots). Note that, consistent with virtually all previous 

applications, in equation (13) we include only the own expected output price (deflated by general 

input price). The two corn and soybean yield equations are estimated within and SUR 

framework, which allows for contemporaneous correlation in their residuals. 

 

3.4   Data 

For the analysis we construct two datasets: acreage dataset for 2005-2015, and yield 

dataset for 1971-2015. The former is based on our desire to focus on supply response in the 

period of the RFS implementation, as discussed in the introduction. The purpose of estimating 

the yield response model, on the other hand, is to account for anticipated yield increases in 

computing expected per-acre returns. Because the underlying technical progress responsible for 

yield increases is inherently a long-term phenomenon, observations over a sufficiently long 

period are desirable. Hence, we estimated the yield model over the much longer period 1971-

2015. In what follows, we explain how we construct each variable in these datasets. The actually 

analyzed counties in the 12 Midwestern states are displayed in Figure 3.1, and summary statistics 

are describes in Table 3.2. All monetary values in Table 3.2 are expressed in their nominal 



www.manaraa.com

106 

 
 

values. For the actual estimation, by construction we consider relative terms normalized by the 

general input price, as discussed earlier.  

 

3.4.1   Acreage shares 

County-level acreage values for corn and soybeans are from the National Agricultural 

Statistics Service (NASS) of the U.S. Department of Agriculture (USDA) 

(https://quickstats.nass.usda.gov/). The 12 Midwestern states consists of 1,055 counties with 

11,605 data points over the considered 11 years. Focusing on counties which are non-irrigated 

(i.e., less than 10% irrigation rate as defined in Xu et al. 2013) and in the traditionally delimited 

rainfed area (i.e., East of 100th meridian) yields 834 counties with 9,174 data points. These 

NASS/USDA data have missing values, however. Accordingly, we choose to drop counties with 

more than 1/3 missing values over our 11 years; after this procedure, 686 counties remain with 

7,546 data points. Finally, we obtain 6,961 observations, over 686 counties, that have 

observations on both corn and soybean acreages and that have last year acreage values.31 Note 

that during the estimation taking first lag on shares causes loss in observations (besides first 

differencing). To reduce such data loss, we construct first-lagged shares by filling out 2004 

values. Thereby, level equation models based on equation (8) have 6,961 observations, while 

differenced equation models based on equation (12) have 6,149 observations. 

To calculate the share of acreage for considered three crop categories—corn, soybeans, 

and other—we use total cropland values from Census of Agriculture of USDA. Census values 

                                                 
31 To be precise, we have 120 data points out of 7,546, which are missing both corn and soybean acreage values. 
After dropping them, we drop additional 277 data points out of 7,426 because either corn or soybean acreage value 
is missing. In addition, there are 188 observations do not have previous year acreage values.       
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are only available at five-year intervals. Furthermore, there are counties for which the sum of 

corn and soybean acreages from NASS/USDA is greater than the census value for total cropland, 

in some years, implying negative shares for the “other crops” aggregate. This happens even for 

recent census years, for which an upward adjustment is applied for original census values to 

conform to NASS/USDA values (http://www.ers.usda.gov/data-products/major-land-

uses/glossary.aspx#cropland).  

To resolve these issues we do two things. First, consistent with the presumption that, 

within a given county, total available cropland is unlikely to have varied over last decade, we 

postulated a constant county-level total cropland, and we measure it by the maximum among 

census values recorded over the most recent three censuses (2002, 2007 and 2012). Still, this left 

118 observations (out of 7,149) with the “insufficient” cropland problem. For these 118 

observations, we manually calculate the total cropland value by summing corn and soybeans 

acreages, from NASS/USDA source, with the area for all other crops obtained from Cropland 

Data Layer (CDL) of NASS/USDA 

(https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php). The CDL is an 

image of an entire state with a crop or land use classification code corresponding to each pixel, 

where each pixel is less than one acre in size. Based on the classification we can sort out other 

crops except for corn and soybeans (See Appendix B.2. for the details about the replacement). 

 

3.4.2.   Expected per-acre revenues for corn and soybeans 

In order to construct the reduced per-acre revenue variables used in equations (6) and (7) 

(i.e., kit kt kitr p y ), we construct expected output prices ( ktp ) and expected yields ( kity ) for corn 
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and soybeans (while constructing an index of expected per-acre revenue for the other crop as 

explained later). We construct the expected national prices with futures prices. Specifically, for 

crop k =1,2 in year t , 
,f

kt ktp p
 , where ,f

k tp
  denotes the futures price, for the first delivery 

month after harvest, quoted at decision time  . The relevant delivery months are December for 

corn and November for soybeans. Daily futures price data are obtained from Quandl 

(https://www.quandl.com/). We use futures prices with a delivery month of December for corn 

and with a delivery month of November for soybeans. We average daily closing futures prices 

over January to March, i.e., before the planting season. The general input price index is 

approximated by the national price index for all agricultural intermediate goods, from the 

Economic Research Service (ERS) of USDA. Because the input price index is updated only up to 

2013, we keep the 2013 value for 2014 and 2015. 

To obtain the expected yield values, we can utilize our yield equation, i.e., equation (13). 

Given that including or excluding the own expected price provides virtually identical predicted 

yields (as shown in the results section), we use the model without output prices. Furthermore, to 

obtain the expected yield that is relevant at farmers’ decision time, we consider unconditional 

mean values for the weather variables. Hence, expected yields are constructed as follows:   

(14) ˆˆ ˆ ( )
y

kit k i kiky m t   ξ ω , for { , }k c s , 

where iω  is a vector of unconditional mean values for weather variables (1971-2015) for county 

i ; a linear time trend is considered for ˆ ( )km t . Using the obtained expected price and expected 

yield, we construct the expected per-acre revenue variables for corn and soybeans (2005-2015).  
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3.4.3   Expected per-acre revenue for other crops  

As noted, we consider a proxy for “other crops” per-acre revenue. To be specific, we compute 

the expected per-acre revenue for other crops as an index of expected revenues for wheat, alfalfa 

and sorghum. Table B1 in the Appendix documents that wheat, alfalfa and sorghum are in fact 

the major crops, other than corn and soybeans, for the states considered in this study. The 

expected wheat price is constructed similarly to the procedure used for corn and soybeans: it uses 

the wheat futures price (for the December delivery month, quoted at decision time). As for the 

expected alfalfa and sorghum prices, these are respectively measured by averaging state-level 

received prices for the months of January to March (as done by Hendricks, Smith, and Sumner 

2014). Expected yield is the predicted value from county specific regressions on a linear time 

trend using NASS/USDA wheat, alfalfa and sorghum yield data.32 Now, the expected revenues 

for wheat, alfalfa and sorghum are aggregated in the county-specific index by using acreage in 

2010 as weights. Due to the presence of considerable missing values in NASS/USDA acreage 

data, we alternatively use CDL data to obtain wheat and alfalfa acreage information.33  

 

3.4.4   Ethanol pressure, weather and yield variables 

The ethanol pressure variable measures the local corn demand of ethanol plants based on the 

nearby ethanol plant capacity, which causes exogenous demand shifts in the local market. For 

each year, we construct the county-specific ethanol pressure measure by solving a quadratic cost 

                                                 
32 Given the states missing price and/or yield data by NASS/USDA, replacements are conducted. For example, the 
alfalfa price (yield) for IN (every county in MI) is missing, so we used that of IL (average expected value of IN) for 
this state. Since sorghum price (yield) is available only for IL, KS and MO (counties in IL, IN, IA, KS, MO, NE and 
SD), the (average expected) values are used for contagious states.    
33 Year 2010 is chosen as base year in order to strike the balance between the accuracy of CDL, which starts to use 
30m subgrid from 56m for the entire U.S. since 2010, and the accuracy of predicted wheat yield, for which the 
wheat yield data is available only up to 2007 by NASS/USDA.  
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minimization problem. For this variable having its value from zero to one, zero means no 

contribution from the county production to nearby ethanol plants, while one means full 

contribution. Since the corn-based ethanol has been the main biofuel for recent years, we focus 

on the local demand shock for corn (not for soybeans). For the detailed model and computation, 

refer to Appendix B3. 

We consider seven weather variables. Two of them are heat variables, growing degree 

days (GDD) and excess heat degree days (EDD) in the growing season (June to September), and 

five are water stress variables: monthly Palmer Z indices for May, June, July, August and 

September. The definition of these weather variables, and the way they are assembled, follows 

closely the procedure described in Xu et al. (2013). Briefly, GDD accounts additional beneficial 

degrees within 10°C and 30°C, while EDD captures additional harmful degrees over 32.2°C. For 

1971-2014 we use the compiled daily temperature data from United States Historical 

Climatology Network (USHCN) of National Oceanic and Atmospheric Administration (NOAA), 

which is provided in the website of Carbon Dioxide Information Analysis Center (CDIAC) 

(http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html). But CDIAC no longer provides annual 

updates after 2014, and we collect temperature data from the Parameter-Elevation Regressions 

on Independent Slopes Model (PRISM) database only for 2015 (http://prism.oregonstate.edu/). 

Palmer Z index data are collected using the daily index data from NOAA’s National Centers for 

Environmental Information (NCEI) (https://www.ncdc.noaa.gov/temp-and-

precip/drought/historical-palmers/). The index measures the deviation from normal water stress, 

represented by 0, where -2 or less indicates drought and +5 or more indicates flood conditions. 

All weather variables have no missing values for 686 counties over 45 years.          
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County-level yield values for corn and soybeans are obtained from NASS/USDA for 

1971 to 2015. We collect yield values for the 686 counties used in the acreage estimation. To run 

the SUR model we drop data points for which at least one of either corn or soybean yield is 

missing. After dropping missing data points, we eventually have 28,013 observations for the 

yield estimation, over 45 years.  

 

3.5   Results 

3.5.1   Acreage response 

The estimation results under the acreage models—dynamic model 1, dynamic model 2 

and static model—are displayed in Table 3.3. All models are based on first differencing as in 

equation (12). The results under the dynamic model 1 are based on one-step GMM estimator, 

while those under the dynamic model 2 are based on the two-step GMM estimator. The static 

model uses the two-step GMM estimator, omitting lagged shares in the equations. All standard 

errors of estimates are clustered by counties to account for the possible correlated behavior 

within each county. For comparison purposes we estimate three alternative models—level 

equation OLS, within-groups, and differenced equation OLS estimators—which are reported in 

Table B2 in the Appendix.    

We assume that the futures price and anticipated yields are exogenous and thus treat the 

constructed per-acre return variables as exogenous, along with the ethanol pressure variable and 

spring Palmer indices. Except for acreage shares, therefore, we use regressors in differences as 

instruments without lagging. Note that the time trend effect is estimated by constant term in 

differenced equations and constant term is used as instruments too. We find evidence of third- 

and second-order serial correlations in the error terms for corn and soybean equations, 
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respectively. Hence, we conservatively use fifth or longer lagged levels for endogenous 

variables—corn and soybean shares—for both equations. By collapsing instrument matrix, we 

have one instrument per lag per variable, and we choose to use only fifth lagged share levels as 

instruments, yielding two instruments. Given that there is a trade-off between bias and efficiency 

in terms of number of instruments in the dynamic panel model (e.g., Hendricks, Janzen and 

Dhuyvetter 2012), we sacrifice some efficiency by choosing a small number of instruments. This 

is mainly because adding more share instruments (such as sixth lag of corn share and sixth lag of 

soybean share) weakens the orthogonality of instruments to error terms, resulting in high 

Hansen’s J statistics. Admittedly, because each of our estimation equations includes two lagged 

dependent variables, and there is serial correlations in the level equation error terms, the choice 

of instruments is sensitive and restrictive.34  

We find that the coefficients for all per-acre revenue variables are significant for both 

corn and soybean equations, under all models in Table 3.3 (and under all models in Table B2). 

Especially, the magnitude of these coefficients are almost the same under all dynamic models 

that control the individual fixed effects (that are, the dynamic models 1 and 2 in Table 3.3, and 

the dynamic models 4 and 5 in Table B2). This supports the exogeneity of per-acre revenue 

variables to the idiosyncratic error terms. We also find that those estimates under the static model 

are larger in absolute term compared to those under the dynamic models. Under the dynamic 

models 1 and 2, the coefficients of own lagged shares are not significant, while those of cross 

lagged shares are significant. Although it is less straightforward than the case of single equation 

                                                 
34 As many applications do, introducing year dummies might reduce the correlation between instruments and errors 
by controlling any common shocks for all counties in a given year. But it would distort the explanatory power of 
per-acre revenues that include the futures prices, which are common for all counties.   
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models, one way to check the validity of those estimates is to compare them with biased 

estimates. It turns out that the GMM estimates on own lagged shares are lower than the level 

equation OLS estimates and higher than the differenced equation OLS estimates. The GMM 

estimates on cross lagged shares are similar to those of the within-groups estimates. Thereby we 

conclude that the difference GMM estimates are not suffering significantly from finite sample 

bias. Note that the eigenvalues of the 2×2 full matrix of coefficient estimates of own and cross 

lagged shares Γ̂  are (0.052, -0.401) for the dynamic model 1, and (0.162, -0.405) for the 

dynamic model 2, implying that both are dynamically stable.  

The coefficients of the ethanol pressure variable and March-May Palmer indices are also 

robust across the models. Under dynamic models in Table 3.3 (and Table B2), the increase in 

ethanol pressure is significantly associated with the increase in corn share, while not significant 

for soybean share. This supports the idea that since the RFS has been initiated, the proliferation 

of ethanol plants in some regions of the Midwest has promoted the some further expansion of 

corn production beyond that attributable to national market conditions. The severe rainfall in 

March and April is significantly associated with less corn share but with more soybean share, 

while that in May explains less shares for both. The cross correlation of residuals between corn 

and soybean equations are -0.16 to -0.28. For both dynamic and static two-step estimators, the 

overidentification test statistics (Hansen’s J statistics) indicate that the null hypothesis of valid 

instruments is not rejected.  

Given the small difference in the magnitude between one-step and two-step estimates, 

our baseline dynamic model is the one based on the two-step GMM estimator because it might 

improve efficiency to some degree from the one-step estimator when the error structure is not 

simple. (A caveat is that the robust standard errors might be biased downward for two-step 
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estimator.) Calculated elasticities based on the dynamic and static two-step GMM estimators, 

evaluated at the mean point of the data, are reported in Table 3.4. For the dynamic case, the long-

run parameters are obtained as discussed in Section 3.1. The residual elasticities are computed as 

discussed in equations (9), (10) and (11) for the short and long runs. Note that we evaluate the 

elasticities at the mean for the entire samples. To evaluate the elasticities at the mean point, we 

ignore the covariance term and basis and evaluate the elasticities at the mean of the expected per-

acre revenue. The reported standard errors for elasticities are calculated using the delta method. 

Most elasticity values turn out to be quite significant. Under all three cases, all signs 

accord with expectations, where the adding-up condition results in positive signs of soybean and 

other acreage elasticities w.r.t. input price. Based on the baseline dynamic model, the corn and 

soybean own- and cross-elasticities, which are of our main motive of interest, show that both 

crops have a more elastic response in the short run than in the long run. This is because of the 

structure of Γ̂  in the dynamic models in Table 3.3, especially indicating the strong cross-acreage 

dynamics between corn and soybeans. Note that corn elasticities are larger than those of 

soybeans in absolute terms. The cross-price elasticities are fairly large in absolute value, relative 

to the own-price elasticities, indicating that an expansion of corn acreage largely comes at the 

expense of soybean acreage (and vice versa). The short-run elasticities for corn and soybeans 

under the static model are larger than the counterparts under the dynamic model. 

Given the relatively large magnitude of cross-price elasticities, an interesting question 

concerns the responsiveness of total acreage allocated to the two crops, corn and soybeans, 

resulting from a generalized increased in their prices. In addition to these individual elasticities, 

therefore, we compute a “total” elasticity T  as follows. Consider scaling the price of both crops 
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by a constant 0  , and represent total acreage share allocated to these two crops as 

1 1 2 2 1 2( , ) ( , )Ts s r r s r r     . The total elasticity T  can then be defined as 

1

T
T

T

s

s











. 

By taking derivative w.r.t.   of the individual crop shares, and evaluating at 1  , we can then 

expressed this total elasticity in terms of the individual elasticities as follows:  

(15)    1 2
11 12 21 22T

T T

s s

s s
        . 

This total elasticity is also reported in Table 3.4, and turns out to be 0.04 for both short and long 

runs under the baseline dynamic model, and 0.03 under the static model. This means that, for 

instance, a doubling of the real price of both corn and soybeans would result in an expansion of 

the cropland allocated to these two crops of 4% in the short run and in the long run under the 

baseline dynamic model. For comparison purposes, when using the long-run elasticity values in 

Hendricks, Smith and Sumner (2014), the total elasticity is obtained by 0.0025. This is much 

more restrictive than ours, and it is sensible in that their analysis focuses on the three main states 

in the corn belt (Illinois, Indiana and Iowa).    

Given the estimates of the dynamic parameters Γ̂  and the short-run response parameters 

B̂ , we can project cumulated values of response parameters tB  for each year of t  as follows:  

(16) ( 1)

1

ˆ ˆ
t

t




 
   

 
B B Γ 


  for 1, 2 , ...t  , 

where we assume that the (permanent) changes in per-acre revenues occur at 1t  . Figure 3.2 

describes the adjustment of elasticities calculated from the projected parameters based on 

equation (16). All own- and cross-elasticities show radical adjustments in the first period. The 
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values oscillate and then almost converge to the long-run values after just three periods. The 

resulting total elasticity is stable all the time at the low level.  

 

3.5.2   Yield response 

The estimation results for the yield equations, based on equation (13), are displayed in Table 3.5. 

For the comparison, the results with/without the inclusion of the own output price are both 

reported. Even for the case without price, the two yield equations are run under the SUR model 

giving the information of residual correlation. The interpretation of the linear trend coefficient is 

straightforward. For the model without the inclusion of the own price, Table 3.5 shows 

exogenous technological change is responsible for a gain of 1.666 bu/acre/year for corn, and 

0.431 bu/acre/year for soybeans. The weather variables are strongly significant for both corn and 

soybean yield and across all specifications. Growing season GDD and EDD show expected signs 

(positive and negative, respectively). The deviation of water stress is bad for yield during early 

and late growing season (that is, planting time and harvesting time) but beneficial during the 

middle of the growing season (July and August). When including own price, columns (3) and (4) 

in Table 3.5, the explanatory power of weather and trend variables remain the same. The 

calculated elasticities of yield response w.r.t. own outprice are significant but very small: 0.010 

for corn and -0.0004 for soybeans.  

We also considered a more flexible specification for the trend variable, a spline with two 

knots which essentially postulate different linear trend for three sub-periods or the same length 

(1971-1985, 1986-2000, and 2001-2015). The results are reported in Table B3 in the Appendix. 

For corn we find an increasing effect of technology-induced yield gains over time. The larger 

annual yield gain for the last sub-period (2001-2015) is consistent with the positive impact on 
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corn yields due to the adoption of genetically engineered varieties, as documented in Xu et al. 

(2013). For soybeans, the first and third periods show almost identical annual yield gains, with a 

small drop for the middle period.  The use of a spline trend also affects the estimated coefficients 

for the yield response to price. The computed elasticities are now -0.063 and 0.021 for corn and 

soybeans, respectively.  

 

3.6   Conclusion 

The RFS is widely credited with contributing significantly to commodity price increases. In 

addition to providing an exogenous source of new demand for agricultural products, the 

expansion of ethanol producing plants across the Midwest provided a source of change for 

historical basis patterns. All this provides an ideal setting to estimate the supply response for 

corn and soybeans, the major agricultural commodities produced in the United States.  This 

paper estimates the U.S. corn and soybean supply response by focusing on the most recent 

eleven years (2005-2015), which have been most directly affected by the implementation of the 

RFS. In addition, in this period the impact of traditional government support programs has been 

minimal, making it easier to econometrically identify farmers’ supply response to price signals. 

One of the main motive of interest in our analysis is to assess the dynamic supply substitutability 

between corn and soybeans. Hence, the analysis focused on the 12 Midwestern states of the 

traditional corn belt, where most counties are typically observed to produce both crops. Acreage 

and yield responses are modeled separately. Acreage share equations maintain the standard 

theoretical properties of homogeneity, adding-up and symmetry. 

Our results, under the dynamic models that we considered, indicate that the U.S. supply 

responses for corn and soybeans are larger in the short run than in the long run, and that they are 
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quite inelastic. This outcome is attributed to the strong cross-acreage dynamics related to crop 

rotation behavior. Combining acreage and yield responses (two-step difference GMM estimates 

for acreage shares, and SUR estimates for expected yield function with a linear trend), we obtain 

an estimated own-price supply response (at the mean) of 0.51 for corn and 0.38 for soybeans in 

the short run (and 0.38 and 0.27 in the long run). Virtually all of the estimated response is 

attributable to acreage changes. Our estimated elasticities are quite similar to the short-run and 

long-run elasticities reported by Hendricks, Smith, and Sumner (2014), but smaller than those 

reported by Miao, Khanna, and Huang (2016). 

Cross price elasticities between corn and soybeans turned out to be negative, as expected, 

and relative large in magnitude in the short run and long run. This means that, when both corn 

and soybean prices move together, the total acreage allocated to these two crops is very inelastic: 

in both short and long runs, the relevant total elasticity remains 0.04. This suggest that the ability 

of the U.S. corn and soybean production sector to accommodate the demand shock due to the 

RFS is quite limited. These results are consistent with the observation that—while world 

production has grown in response to commodity price increases—over the eleven years of our 

study the U.S. share of world production, for both corn and soybeans, has been declining.  
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Table 3.1. Selected Work for U.S. Corn and Soybean Acreage Elasticities 

   With respect to 

Work Region/unit/period Elasticity 
of 

Corn price 
(or 

revenue) 

Soy price 
(or 

revenue) 
Lee and Helmberger (1985) a IL, IN, IA, OH 

   /state/1948-80 

Corn acres 

Soy acres 

0.12 

-0.23 

-0.17 

0.35 

Shideed and White (1989) b f U.S./nation/1951-86 Corn acres 

Soy acres 

0.19 

-0.18 

-0.10 

0.41 

  Corn acres 

Soy acres 

0.26 (L) 

-0.69 (L) 

-0.15 (L) 

1.58 (L)

Chavas and Holt (1990) c U.S./nation/1954-85 Corn acres 

Soy acres 

0.07 

-0.16 

-0.11 

0.06 

Orazem and Miranowski d 

   (1994) 

IA/county/1952-91 Corn acres 

Soy acres 

0.10 

0.01 

0.02 

0.33 

Miller and Plantinga (1999) e  IA/county/1981-94 Corn acres 

Soy acres 

0.93, 2.35 

-1.59, 0.55 

-1.05, -0.50 

0.53, 1.76 

Arnade and Kelch (2007) IA/county/1960-99 Corn acres 

Soy acres 

0.01 

-0.03 

-0.04 

0.05 

Hendricks, Smith, and 
Sumner (2014) f 

IL, IN, IA 

   /field/1999-10 

Corn acres 

Soy acres 

0.40 

-0.46 

-0.31 

0.36 

  Corn acres 

Soy acres 

0.29 (L) 

-0.33 (L) 

-0.22 (L) 

0.26 (L)

This paper f 12 Midwest states 

   /county/2005-15 

Corn acres 

Soy acres 

0.50 

-0.51 

-0.31 

0.38 

  Corn acres 

Soy acres 

0.38 (L) 

-0.34 (L) 

-0.23 (L) 

0.27 (L)

Note: a Values are based on their free-market regime. b Values are based on the results using futures price. c Values 
are w.r.t own and cross revenues instead of prices. d Values are based on the results under rational expectations. e 
Numbers are paired with smallest and largest values across values for three counties under their unconditional 
model. f long-run values are denoted by (L). 
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Table 3.2. Summary Statistics (686 counties) 

 Mean Std. 
Dev. 

Min Max 

Data for acreage equations: 2005-2015 (6,961 observations) 

   Acreage share for corn 0.35 0.15 0.005 0.77 

   Acreage share for soybeans 0.32 0.12 0.004 0.65 

   Acreage share for other crop 0.33 0.22 0.0005 0.98 

   Expected revenue for corn ($1000/acre) a 0.63 0.20 0.16 1.07 
   Expected revenue for soybeans 

($1000/acre) a 
0.43 0.14 0.14 0.74 

   Expected revenue for other crop 
($1000/acre) a 

0.42 0.15 0.10 1.05 

   Input price index (2010=1) 1.03 0.18 0.73 1.23 

   Ethanol pressure 0.28 0.38 0 1 

   Palmer Z index in Mar -0.21 1.71 -4.25 7.08 

   Palmer Z index in Apr 0.80 2.18 -4.00 9.04 

   Palmer Z index in May 0.37 2.14 -4.09 8.76 

Data for yield equations: 1971-2015 (29,494 observations) 

   Yield for corn (bu/acre) 116 36 7 236 

   Yield for soybeans (bu/acre) 36 10 4 73 

   Expected price for corn ($/bu) 2.97 1.06 1.26 5.89 

   Expected price for soybeans ($/bu) 6.91 2.40 2.87 13.31 

   Input price index (2010=1) 0.64 0.26 0.21 1.23 

   GDD in growing season 2,432 324 1,168 3,418 

   EDD in growing season 37 50 0 494 

   Palmer Z index in May 0.40 2.21 -4.78 9.35 
   Palmer Z index in Jun 0.24 2.22 -6.51 9.05 

   Palmer Z index in Jul 0.47 2.37 -5.69 15.21 

   Palmer Z index in Aug  0.36 2.19 -5.72 11.69 

   Palmer Z index in Sep  0.16 2.20 -4.94 15.63 

Note: a The “expected revenues” are the reduced values ( k kp y ), without basis and own 

covariance terms. 
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Table 3.3. Estimated Coefficients under Dynamic and Statics Models 

 
Dynamic model 1: 
One-step diff GMM 

Dynamic model 2: 
Two-step diff GMM 

Static model: 
Two-step diff GMM 

Variables 

Corn  
(1) 

Soy  
(2) 

Corn  
(3) 

Soy  
(4) 

Corn  
(5) 

Soy  
(6) 

Corn revenue 0.29*** 

(0.007) 

-0.27*** 

(0.007) 

0.29*** 

(0.007) 

-0.27*** 

(0.007) 

0.36*** 

(0.006) 

-0.34*** 

(0.007) 

Soy revenue -0.27*** 

(0.007) 

0.29*** 

(0.009) 

-0.27*** 

(0.007) 

0.29*** 

(0.009) 

-0.34*** 

(0.007) 

0.36*** 

(0.008) 

Other revenue -0.02*** 

(0.005) 

-0.03*** 

(0.005) 

-0.03*** 

(0.004) 

-0.02*** 

(0.005) 

-0.01*** 

(0.002) 

-0.03*** 

(0.003) 

Lagged corn share -0.13 

(0.137) 

0.22* 

(0.125) 

-0.07 

(0.121) 

0.28** 

(0.111) 

  

Lagged soy share 0.22* 

(0.125) 

-0.22 

(0.117) 

0.28** 

(0.111) 

-0.17 

(0.107) 

  

Ethanol pressure 0.010*** 

(0.003) 

-0.001 

(0.002) 

0.008*** 

(0.002) 

-0.003 

(0.002) 

0.010*** 

(0.002) 

-0.006*** 

(0.002) 

Palmer index in Mar -0.002*** 

(0.0002) 

0.001*** 

(0.0002) 

-0.002*** 

(0.0002) 

0.001***

(0.0002)

-0.003*** 

(0.0002) 

0.001*** 

(0.0002) 

Palmer index in Apr -0.002*** 

(0.0001) 

0.001*** 

(0.0001) 

-0.002*** 

(0.0001) 

0.001***

(0.0001)

-0.002*** 

(0.0001) 

0.001*** 

(0.0002) 

Palmer index in May -0.002*** 

(0.0003) 

-0.001*** 

(0.002) 

-0.003*** 

(0.0002) 

-0.001***

(0.002) 

-0.003*** 

(0.0001) 

<-0.001 

(0.0001) 

Trend <-0.001 

(0.0006) 

0.003*** 

(0.0005) 

<-0.001 

(0.0005) 

0.003***

(0.0004)

<0.001 

(0.0002) 

0.004*** 

(0.0002) 

Cross correlation in 
residuals 

-0.19 -0.16 -0.28 

p-value of Hansen’s J 
statics 

 0.29 0.49 

Note: Standard errors are in parentheses and clustered by counties. ***, **, and * indicate significance at the 
1%, 5%, and 10% levels, respectively.  
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Table 3.4. Elasticities at Overall Means 

 Corn price Soy price Other price Input price 
T  

DYNAMIC: SHORT-RUN     
   Corn acreage 0.50*** 

(0.013) 
-0.31*** 
(0.009) 

-0.03*** 
(0.005) 

-0.15*** 
(0.004) 0.04*** 

(0.006)    Soy acreage -0.51*** 
(0.014) 

0.38*** 
(0.012) 

-0.03*** 
(0.007) 

0.16*** 
(0.004) 

   Other acreage -0.05*** 
(0.009) 

-0.03*** 
(0.007) 

0.06*** 
(0.010) 

0.02*** 
(0.003) 

− 

DYNAMIC: LONG-RUN     
   Corn acreage 0.38*** 

(0.025) 
-0.23*** 
(0.011) 

-0.04** 
(0.021) 

-0.10*** 
(0.008) 0.04*** 

(0.019)    Soy acreage -0.34*** 
(0.024) 

0.27*** 
(0.014) 

-0.01 
(0.013) 

0.08*** 
(0.021) 

   Other acreage -0.08** 
(0.040) 

-0.01 
(0.012) 

0.07** 
(0.030) 

0.03** 
(0.013) 

− 

STATIC     
   Corn acreage 0.61*** 

(0.010) 
-0.40*** 
(0.008) 

-0.02*** 
(0.004) 

-0.19*** 
(0.003) 0.03*** 

(0.003)    Soy acreage -0.65*** 
(0.013) 

0.48*** 
(0.010) 

-0.04*** 
(0.004) 

0.20*** 
(0.004) 

   Other acreage -0.03*** 
(0.006) 

-0.04*** 
(0.004) 

0.06*** 
(0.005) 

0.01*** 
(0.002) 

− 

Note: Standard errors are obtained by delta method and displayed in parentheses. ***, **, and * indicate 

significance at the 1%, 5%, and 10% levels, respectively. T  is the responsiveness of total acreage 

allocated to corn and soybeans w.r.t. same scaling changes in both prices.  
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Table 3.5. Estimation Results for Corn and Soybean Yields under SUR Model 

 Without price  With price 

Variables 

Corn yield 
(1) 

Soy yield 
(2) 

 Corn yield 
(3) 

Soy yield 
(4) 

Corn price   0.233* 
(0.120) 

 

Soy price     -0.001 
(0.016) 

Growing degree days 0.008*** 
(0.001) 

0.007*** 
(<0.001) 

0.008*** 
(0.001) 

0.007*** 
(<0.001) 

Excess degree days -0.299*** 
(0.004) 

-0.069*** 
(0.001) 

-0.299*** 
(0.004) 

-0.069*** 
(0.001) 

Palmer index in May -1.054*** 
(0.048) 

-0.375*** 
(0.013) 

-1.052*** 
(0.048) 

-0.370*** 
(0.013) 

Palmer index in Jun -0.484*** 
(0.051) 

-0.181*** 
(0.014) 

-0.503*** 
(0.052) 

-0.190*** 
(0.014) 

Palmer index in Jul 1.636*** 
(0.051) 

0.188*** 
(0.014) 

1.653*** 
(0.052) 

0.196*** 
(0.014) 

Palmer index in Aug 0.772*** 
(0.050) 

0.693*** 
(0.014) 

0.770*** 
(0.050) 

0.685*** 
(0.014) 

Palmer index in Sep -0.382*** 
(0.050) 

-0.017 
(0.014) 

-0.375*** 
(0.050) 

-0.017 
(0.014) 

Trend 1.666*** 
(0.008) 

0.431*** 
(0.002) 

 1.682*** 
(0.011) 

0.442*** 
(0.003) 

Constant 77.771*** 
(3.202) 

12.452*** 
(0.893) 

 74.046*** 
(3.374) 

10.680*** 
(0.945) 

R2 0.76 0.76 0.76 0.76 

Cross correlation of 
   residuals 

0.56  0.56 

Own price elasticity   0.010* 
(0.005) 

-0.0004 
(0.005) 

Note: Standard errors are in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 
respectively. For elasticities, standard errors are obtained by delta method. 
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Figure 3.1. The coverage of analysis: 686 counties in 12 Midwestern states 
 
 
 

 
 
 

Figure 3.2. Adjustment of Acreage Responses to Changes in Per-Acre Revenues 
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APPENDIX B 

SUPPLEMENTARY MATERIALS 

 

B.1   Parametric Restrictions 

Suppressing subscripts for county and time, we have following supply functions when 

optimal acreage allocation ( )kl   satisfies the homogeneity of degree zero in its arguments: 

1 1 1 2 3 1( , , ,1)q l r r r y ;  

2 2 1 2 3 2( , , ,1)q l r r r y ; 

3 3 1 2 3 3( , , ,1)q l r r r y , 

where k k k kr p y v   is the normalized expected per-acre revenue for crop 1, 2 , 3k  . Assume 

that the covariance term kv  in the expected revenue is constant over time and assume that 

expected yield is not responding to price (based on our yield estimation results). Then we have 

following substitution matrix: 

1 1 1 21 1 1
1 1 2 1 3

1 2 3 1 2 3

2 2 2 22 2 2
2 1 2 2 3

1 2 3 1 2 3

3 3 3 23 3 3
3 1 3 2 3

1 2 31 2 3

q q q l l l
y y y y y

p p p r r r

q q q l l l
y y y y y

p p p r r r

l l lq q q
y y y y y

r r rp p p

        
           
        

           
       
          

.  

After applying the transformation from acreage to optimal share k ks l a  (based on the fixed 

cropland over the period), we can derive the symmetry restriction for estimation as follows:  

1 2

2 1

q q

p p

 


 
   1 2

1 2 2 1
2 1

l l
y y y y

r r

 


 
  1 2

2 1

s s

r r

 


 
  12 21  . 

Other two symmetry restrictions are used in equation (10) for retrieving elasticities.  
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B.2   Replacing Total Cropland Values Using Cropland Data Layer (CDL) 

In the CDL webpage, the Metadata section describes the categories of crop and land use in the 

CDL. The county-level values for the CDL are provided from the FAQ section in the CDL 

webpage (https://www.nass.usda.gov/Research_and_Science/Cropland/sarsfaqs2.php). Given 

that the data do not cover our entire data period, we choose to use the values in 2010, from which 

the sub-grids becomes 30m from 56m, to calculate the ballpark area for other crops. We consider 

the other crops as all crops except for corn and soybeans, including fallow/idle cropland (where 

idle cropland includes the area under the conservation reserve program).   

There are 118 data points in 24 counties for which the total cropland from NASS survey 

data is larger than the sum of corn and soybean acreages from the official NASS estimates. 

Figure B1 describes those counties with dark black, while the panel (b) describes the intensity of 

having the unmatched data points within the county. In panel (b), the scale from 1 to 11 is 

described by degree of darkness. For those unmatched points, we first add the CDL other crop 

acreage to their corn and soybean acreages to obtain a new total cropland. Then we replace the 

unmatched total cropland values with the new values for those 118 data points. Now, if there are 

multiple unmatched cases within a county, we choose the largest total cropland and replace 

others with it. Since we are maintaining the assumption that total available cropland is fixed 

during the analyzed period, the replacement within county does not affect the estimates as long 

as the county-specific heterogeneity is controlled. 
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(a) Unmatched counties 

  
 

(b) Unmatched observations within counties 
 

 
Figure B1. Counties having unmatched total cropland values 
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B.3   Metric for the Local Demand of Ethanol Plants 

B.3.1   The model 

Notation (ignoring the time subscript t ) 

N  = number of counties  

M  = number of ethanol plants.   

iX  = (expected) corn output of county  

jK  = capacity of ethanol plant j   

ijd  = distance between the centroid of county i  and the location of plant j ( 0ijd  ) 

ijx  = shipment of corn from county i  to plant j   

iE  = index of ethanol-plant corn demand for county i    

Quadratic Programming Formulation 

The problem of interest is to source enough output to meet each plant’s capacity from the closest 

source points. The presumption is that there is more than enough total corn, i.e., 1 1
N M
i i j jX K    . 

Let  ijc x  denote the cost of shipping corn from county i  to plant j, and we assume that 

transportation costs are quadratic in the volume shipped, i.e.,  

  2

2ij ij ij ijc x d x x
    

 
 ,  0  .  

Hence the sourcing of corn for ethanol plants can be formulated as a quadratic programming 

problem:  

 
 

2

1 1

min
2ij

N M

ij ij ij
x i j

d x x


 

  
 

   s.t. 
1

M

ij i
j

x X


 , 
1

N

ij j
i

x K


 , and 0ijx  .  
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Having found the set of shipments  ˆ ijx  that solves the problem, the imputed plant demand for each 

county is defined as 1ˆ ˆM
i j ijx x  , and the constraints guarantee that ˆi ix X . Our metric of interest—

the intensity of ethanol-plant demand—could then be defined as ˆi i iE x X , where 0 1iE  . 

Here the solution to this problem is bound to depend on the parameter  , the value of which 

is somewhat arbitrary. To calibrate this parameter, we consider the following. There are two 

contiguous counties for an ethanol plant. Presuming there is enough supply in county 1 for the plant, 

let 1x  and 2x  denote the shipments from counties 1 and 2 to an ethanol plant (suppressing the plant 

index), so that the marginal cost of these shipments are  

1 1 1(1 )mc d x   and  2 2 2(1 )mc d x  . 

Given that 1 2d d , the parameter   will determine the level at which shipments from county 2 

become competitive, i.e., 1x̂  solves 1 1 2ˆ(1 )d x d  , implying  

 2 1
1

1

ˆ
d d

x
d




  . 

The RHS measures how further away the centroid of county 2 is from the plant, relative to the 

distance of the plant from the centroid of county 1. Hence, for a typical plant’s capacity-based 

maximal corn consumption K , the parameter   can be calibrated as  

 
K

    , 

where   measures how far the second-closest county has to be (relative to the closest county) for the 

plant capacity to be fully met by the closest county. For example, if 5  , then this means that if the 

second-closest county is less than five times further away relative to the closest county, then both 

counties will supply corn to the ethanol plant. If however the second-closest county centroid is five 

times or more further away than the closest county centroid, then the plant will be fully supplied by 
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the closest county. As   increases, therefore, more counties come into play for a plant, and vice 

versa. 

 

B.3.2   Data and computation 

We consider 170 ethanol plants ( 170M  ), which have ever been operated during 2005-

2015. They are all located in the Midwest. For each plant, we then consider nearest twenty counties 

as potential contributors, for a total of 836 counties analyzed ( 836N  ). Those counties fully cover 

the 686 counties in our main dataset. For the production level iX , we use the three year average 

corn production (2001-2003) by county from NASS/USDA data, and fix the value over entire period 

(2005-2015) to avoid any possible endogeneity between ethanol pressure and corn production in each 

year. The annual capacity data for ethanol plants is mainly obtained from the Annual Industry 

Outlook of Renewable Fuels Association 

(http://www.ethanolrfa.org/resources/publications/outlook/), and partially from individual websites 

of biofuel companies. By taking account of the time lag for forming expectation, we calculate the 

expected ethanol pressure at the decision time in current year based on the last year’s capacity 

information. The haversine distance is calculated from each county to each plant. In regard to the 

parameter  , given that the average maximal corn consumption for a plant in 2015 is around 30 

million bushels in the dataset, we choose 5   and thereby   1/6.  

Based on those primitive data and parameter values, we solve the above problem using 

MATLAB and calculate the county-level ethanol pressure. Figure B2 shows the geographic 

distribution of considered 170 ethanol plants, and Figure B3 describes the calculated ethanol pressure 

for the 686 counties over the considered period. 
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Figure B2. The location of ethanol plants (170 plants) 

 

 

 
 

Figure B3. Calculated ethanol pressure for 686 Midwestern counties 
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B.4   Supplementary Tables 

Table B1. Five Major “Other Crops” (% within all crops in 2010 reported in parentheses) 

 1st 2nd  3rd  4th  5th  

IL Winter wheat 

(0.78) 

Alfalfa/hay 

(0.65) 

Sweet corn 

(0.05) 

Sorghum 

(0.05) 

Fallow/idle 

(0.05) 

IN Winter wheat 

(1.63) 

Alfalfa/hay 

(0.98) 

Pop/ornamental 

corn (0.24) 

Fallow/idle 

(0.03) 

Tomatoes 

(0.03) 

IA Alfalfa/hay 

(1.75) 

Oats 

(0.22) 

Winter wheat 

(0.01) 

Pop/ornamental 

corn (0.01) 

Sod/grass seed 

(0.01) 

KS Winter wheat 

(32.77) 

Sorghum 

(7.97) 

Alfalfa & hay 

(2.72) 

Fallow/idle 

(2.56) 

Cotton 

(0.14) 

MI Alfalfa/hay 

(15.66) 

Winter wheat 

(9.30) 

Dry beans 

(4.04) 

Sugarbeets 

(2.26) 

Fallow/idle 

(1.40) 

MN Spring wheat 

(7.64) 

Alfalfa/hay 

(2.76) 

Sugarbeets 

(2.31) 

Dry beans 

(0.66) 

Sweet corn 

(0.53) 

MO Winter wheat 

(3.15) 

Cotton 

(1.09) 

Rice 

(0.49) 

Sorghum 

(0.11) 

Fallow/idle 

(0.07) 

NE Alfalfa/hay 

(1.44) 

Winter wheat 

(1.23) 

Fallow/idle 

(0.41) 

Sorghum 

(0.01) 

Oats 

(0.01) 

ND Spring wheat 

(26.11) 

Dry beans 

(5.81) 

Alfalfa/hay 

(3.37) 

Sunflower 

(2.28) 

Sugarbeats 

(1.69) 

OH Winter wheat 

(7.11) 

Alfalfa/ hay 

(3.57) 

Fallow/idle 

(0.17) 

Pop/ornamental 

corn (0.10) 

Oats 

(0.06) 

SD Alfalfa/hay 

(16.57) 

Spring wheat 

(6.56) 

Winter wheat 

(4.53) 

Sunflower 

(1.66) 

Fallow/idle 

(0.53) 

WI Alfalfa/hay 

(25.10) 

Winter wheat 

(20.10) 

Oats 

(2.29) 

Dry beans 

(0.65) 

Sweet corn 

(0.55) 

Note: The portion is calculated by “each crop area/total crop area×100” based on Cropland Data Layer 
dataset for the analyzed 686 counties in 12 states in 2010 (base year for the other crop price index).  
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Table B2. Estimated Coefficients under Alternative Dynamic Models 

 
Dynamic model 3: 

Level OLS 

Dynamic model 4: 
Within-groups 

Dynamic model 5: 
Difference OLS 

Variables 

Corn  
(1) 

Soy  
(2) 

Corn  
(3) 

Soy  
(4) 

Corn  
(5) 

Soy  
(6) 

Corn revenue 0.22*** 
(0.006) 

-0.18*** 
(0.006) 

0.28*** 
(0.005) 

-0.27*** 
(0.006) 

0.30*** 
(0.005) 

-0.28*** 
(0.005) 

Soy revenue -0.18*** 
(0.006) 

-0.20*** 
(0.009) 

-0.27*** 
(0.006) 

0.31*** 
(0.007) 

-0.28*** 
(0.005) 

0.30*** 
(0.007) 

Other revenue -0.04*** 
(0.004) 

-0.02*** 
(0.005) 

-0.01*** 
(0.003) 

-0.04*** 
(0.004) 

-0.02*** 
(0.003) 

-0.02*** 
(0.004) 

Lagged corn share 0.94*** 
(0.003) 

0.04*** 
(0.003) 

0.27*** 
(0.010) 

0.24*** 
(0.007) 

-0.25*** 
(0.010) 

0.06*** 
(0.008) 

Lagged soy share 0.04*** 
(0.003) 

-0.95*** 
(0.004) 

0.24*** 
(0.007) 

-0.33*** 
(0.010) 

0.06*** 
(0.008) 

-0.30*** 
(0.007) 

Ethanol pressure 0.004*** 
(0.001) 

<-0.001 
(0.001) 

0.006***

(0.001) 
-0.003* 
(0.001) 

0.008*** 
(0.002) 

-0.003 
(0.002) 

Palmer index in 
Mar 

-0.005*** 
(0.0003) 

0.002***

(0.0003)
-0.004***

(0.0002) 
0.002***

(0.0002)
-0.002*** 
(0.0001) 

0.001***

(0.0001)

Palmer index in 
Apr 

-0.002*** 
(0.0002) 

0.001***

(0.0002)
-0.001***

(0.0001) 
<0.001***

(0.0001)
-0.002*** 
(0.0001) 

0.001***

(0.0001)

Palmer index in 
May 

-0.003*** 
(0.0002) 

<-0.001 
(0.0002)

-0.003***

(0.0001) 
<-0.001 

(0.0001)
-0.002*** 
(0.0001) 

<-0.001***

(0.0002)

Trend -0.002*** 
(0.0002) 

0.002***

(0.0002)
<0.001 
(0.0001) 

0.002***

(0.0001)
0.001** 

(0.0004) 
0.003***

(0.0003)

Constant -0.018*** 
(0.002) 

0.029***

(0.002) 
0.178***

(0.008) 
0.167***

(0.008) 
  

Cross correlation 
in residuals 

-0.14 -0.13 -0.20 

Note: Standard errors are in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 
respectively.  
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Table B3. Estimation Results for Corn and Soybean Yields under SUR Model Using a 
Flexible Time Trend 

 Without price  With price 

Variables 
Corn yield 

(1) 
Soy yield 

(2) 
 Corn yield 

(3) 
Soy yield 

(4) 

Corn price   -1.507*** 
(0.145) 

 

Soy price     0.068*** 
(0.019) 

Growing degree days 0.008*** 
(0.001) 

0.007*** 
(>0.001) 

0.007*** 
(0.001) 

0.007*** 
(>0.001) 

Over degree days -0.300*** 
(0.004) 

-0.070*** 
(0.001) 

-0.299*** 
(0.004) 

-0.070*** 
(0.001) 

Palmer index in May -1.030*** 
(0.048) 

-0.364*** 
(0.013) 

-1.029*** 
(0.048) 

-0.366*** 
(0.013) 

Palmer index in Jun -0.584*** 
(0.052) 

-0.184*** 
(0.014) 

-0.505*** 
(0.052) 

-0.178*** 
(0.014) 

Palmer index in Jul 1.719*** 
(0.050) 

0.187*** 
(0.014) 

1.649*** 
(0.050) 

0.182*** 
(0.014) 

Palmer index in Aug 0.762*** 
(0.050) 

0.686*** 
(0.014) 

0.776*** 
(0.050) 

0.692***  
(0.014) 

Palmer index in Sep -0.406*** 
(0.049) 

-0.024* 
(0.014) 

-0.459*** 
(0.050) 

-0.026* 
(0.014) 

Trend 1971-1985 1.457*** 
(0.033) 

0.493*** 
(0.009) 

 1.233*** 
(0.039) 

0.478***  
(0.010) 

Trend 1986-2000 1.555*** 
(0.026) 

0.362*** 
(0.007) 

 1.424*** 
(0.029) 

0.342*** 
(0.009) 

Trend 2001-2015 2.059*** 
(0.030) 

0.497*** 
(0.009) 

 2.111*** 
(0.031) 

0.505*** 
(0.009) 

Constant 80.693*** 
(3.206) 

11.947*** 
(0.896) 

 95.430*** 
(3.693) 

13.266*** 
(0.967) 

R2 0.77 0.76 0.77 0.76 
Cross correlation of 
   residuals 

0.56  0.56 

Own price elasticity   -0.063*** 
(0.006) 

0.021*** 
(0.006) 

Note: Standard errors are in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 
respectively. For elasticities, standard errors are obtained by delta method. 
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CHAPTER 4  

VOLUNTARY AGREEMENTS FOR EMISSION REDUCTION: OLIGOPOLY MARKET  
WITH GREEN CONSUMERS 

 
4.1   Introduction 

Given environmental externalities from firms’ production activities, there are 

uncompensated welfare losses in an economy. Various instruments are used to resolve such 

externality problems, where their primary goal would be to reduce pollution, thereby improving 

welfare. With perfect information about environmental damages, a Pigouvian tax would be the 

most efficient way to achieve the goal. This belongs to economic incentive approaches that—

together with tradable permits—offer alternatives to command-and-control type instruments. 

Another type of instrument related to economic incentives consists of voluntary approaches. 

Although there are differences in details, voluntary approaches in environmental policies 

generally rely on commitments of participants to go voluntarily beyond regulation, which has the 

potential of cost savings on legislation and regulation (Segerson and Miceli 1998; Fleckinger and 

Glachant 2011).  

Voluntary agreements (VAs), by regarding voluntary approaches as a form of 

agreements, have been used increasingly all around the world. According to the OECD database 

(http://www2.oecd.org/ecoinst/queries/Default.aspx, accessed April 2017), there are 322 

distinguishable VAs in 22 countries, with available data mostly from European countries. In the 

United States, after the introduction of the Environmental Protection Agency’s (EPA) 33/50 

program in 1991, there are a growing number of VAs initiated solely by EPA: 28 in 1996, 54 in 

1999, and 87 in 2005 (Khanna and Brouhle, 2009, p. 144). According to Carmin et al. (2003), in 
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United States there are more than 150 VAs, sponsored by the government, industries, and 

independent third parties (NGOs).  

The motivations for firms to participate in VAs are considered mainly two-fold (Lyon 

and Maxwell 2002; Fleckinger and Glachant 2011): to avoid the threat of an alternative policy 

(e.g., a tax), and to appeal to consumers who value environmentally-friendly behavior (green 

consumers). These two motives are accepted as plausible, yet most studies investigate each of 

them separately. In this essay, we consider both motives together in order to analyze the scope 

for a VA policy, relative the laissez faire (i.e., no policy) and tax policy. To be specific, this 

essay adds to the previous literature related to multi-firm participation decisions in that 

oligopolistic product differentiation is embedded in a VA context. This provides a more 

comprehensive framework to investigate the incentives of firms in their participation behavior 

and to characterize the feasibility of implementing a VA and its comparable merits relative to 

other policy options.  

Because VAs typically involve a limited number of firms, it is natural to postulate 

oligopolistic competition. This point has been made by David (2005) who compares tax policy 

and VA under an oligopolistic setting. But he leaves out the possibility of product differentiation 

based on consumer preference and also the possibility of firms’ free-riding behavior (thereby 

ending up with full or zero participation). Having postulated the presence of green consumers, 

we assume that firms operate in an oligopolistic product differentiation setting in the same 
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manner as Bagnoli and Watts (2003). In addition, to incorporate the freeriding behavior, we 

consider self-enforcing equilibrium in terms of the number of participation under a VA.35       

To deal with product differentiation and the operation of a VA together, it is assumed that 

a firm can enhance its environmental performance by adopting a new technology. Furthermore, a 

VA aiming to reduce industry-wide emissions simply requires firms to use the new technology to 

join in. This kind of requirement can be found, for example, in the French agreement on 

treatment of ELVs. Under this VA, the car manufacturers and insurance companies who decided 

to join in the VA have stated that they only will deal with certified dismantlers. Therefore, a 

critical mass of dismantlers must be certified so that the volume of ELVs generated by these 

groups can be handled effectively. Thus, by considering manufacturers and dismantlers as a 

whole, this is a situation where participants have to adopt facilities for reducing marginal 

emission rates. It is said that “[c]ertification of the dismantlers is a key element in the success of 

the EA [environmental agreement] as it provides a means of, largely, excluding free-riders” 

(EEA, 1998, p. 13; [ ] added). Another example is the Danish agreements on industrial energy 

efficiency, in which firms get a rebate on their tax payment by committing investments for 

enhancing their energy efficiency (OECD 2000). 

Lyon and Maxwell (2008) distinguish voluntary agreements and public voluntary 

programs, where the former is based on regulatory threat and the latter is not (but with in-kind 

subsidy). They categorize US voluntary programs into the latter. As in Fleckinger and Glachant 

(2011), the VA in this essay is closer to the former which is more frequently used in non-US 

                                                 
35 This equilibrium concept was introduced by D’Aspremont et al. (1983) in an effort to explain the stability of 
cartels. Applications to voluntary environmental agreements include Carraro and Siniscalco (1993), Barrett (1994) 
and Dawson and Segerson (2008).   
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region. But even for public voluntary programs in the United States, it might be seen that the 

threat-based motive is embedded in it as shown empirically by Khanna and Damon (1999) with 

EPA’s Voluntary 33/50 Program. 

In addition to the participants’ incentive, we consider the regulator’s incentive in terms of 

choosing policy options. We assume the regulator maximizes the social welfare by choosing a 

policy to implement along with a pursuing emission target, but at the same time she perceives a 

political cost associated with the use of tax policy, a cost that is avoided with a VA (or in the 

laissez faire situation). In the real world the efficient tax policy is often not chosen (Davis and 

Knittel 2016), and we conjecture that this reflects policymakers’ unwillingness to bear the 

political cost associated with the use of tax instruments.36  

Using the proposed structure, we obtain the equilibrium of the game in which the 

regulator chooses a policy option given subgame-perfect equilibria under the laissez faire, VA 

and tax policy. Through numerical simulations, we find that when the market is non-competitive, 

the VA, relative to other policy options, improves welfare despite its inefficiency from the 

presence of free-riding behavior. This advantage wears off as the market becomes more 

competitive. Our results complement the conclusion in Dawson and Segerson (2008), who focus 

on the supply side, that a VA is less preferred than a tax policy by a welfare-maximizing 

regulator due to its inefficiency. The main reason for our results is that when the market is non-

competitive, so that the under-production problem prevails, the VA, relative to the tax policy, 

induces firms to produce more (green) output. Importantly, not all consumers always welcome 

                                                 
36 While ignored in this paper for simplicity, the target of the VA can be an outcome of negotiation between a 
regulator and a group of firms. Such situation is dealt with, for example, by Segerson and Miceli (1998), Glachant 
(2007), Fleckinger and Glachant (2011), and Langpap (2015). 
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the VA (unlike the argument in David 2005). As the consumers value the green good more, the 

VA increases the number of green firms and provides a less competitive environment for free-

riders, who increase the price of regular goods. As a result, the total market is less covered, at 

some point, than the tax policy. As to implementation, the potential payoff of the VA is 

attainable provided the regulator’s threat is credible and sufficiently strong. Apart from it (or for 

the cases of weak threat), a high political cost can make the VA (or laissez faire) policy 

implemented over the tax policy despite its lower potential to affect welfare (similar to the 

conclusion about non-binding VAs in Glachant 2007).  

The chapter is organized as follows. In Section 4.2, we provide a brief background about 

the major motives for VA participation. Section 4.3 elaborates the model for the analysis of 

multi-firm product differentiation. In Section 4.4, the equilibrium of the game is analyzed after 

investigating equilibria under two subgames, such as, product differentiation under tax policy 

and product differentiation under a proposed VA. Based on reasonably assumed parameter 

values, numerical simulations are conducted in Section 4.5 to explore the characteristics of 

equilibrium. Sensitivity analysis provides a more general picture regarding possible policy 

implementations. Section 4.6 summarizes conclusions. 

 

4.2   Background 

In this section we briefly review the literature and evidence about the main two 

motivations—a regulatory threat and green consumers—for VA participation. Refer to Lyon and 

Maxwell (2008) for a more general survey of theoretical work and welfare implications in regard 

to VAs and self-regulation.   
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Lyon and Maxwell (2002) analyze the increased use of VAs and summarize three 

motives that corporations can have for regulating themselves: i) cost-cutting, ii) marketing to 

green consumers who are willing to pay extra for environmentally friendly products, and iii) pre-

empting government regulation.37 Although there are writers supporting the first motive,38 Lyon 

and Maxwell point out that the puzzle is why there should be any opportunities for making 

money by cleaning up, where there is no systematic evidence for this motive empirically. For the 

second motive, several theoretical studies have been conducted regarding product differentiation, 

which give clear and coherent insights regarding corporate behavior.39 Given that the third 

motive is often investigated by theoretical research, Lyon and Maxwell conclude that there is 

modest evidence that the threat of future regulation is a significant factor prompting firms to self-

regulate. For an example of the empirical evidence, Khanna and Damon (1999) find that 

compliance under mandatory environmental regulations provides strong incentives for 

participation under the 33/55 program. Fleckinger and Glachant (2011) also conculde that VA 

participation is mainly motivated by future threat policies and green preference of consumers, 

workers and shareholders.   

Given that the motives based on a threat policy and green consumers and are compelling, 

the selected research dealing with the regulatory threat is as follows. With a simple bargaining 

                                                 
37 Alternatively, Croci (2005, pp. 11-20) enumerates seven specified incentives to participate in VA, including the 
above three rationales discussed by Lyon and Maxwell (2002). 

38 For example, Smart (1992) mentions 3M’s “Pollution Prevention Pays” program that achieves cost saving by 
reducing its total emissions. In addition, Howarth, Haddad, and Paton (2000) conduct case studies for two EPA’s 
VAs, “Green Light” and “Energy Star Office Products,” arguing that those are helpful for saving costs by promoting 
the adoption of energy efficient technologies by firms. 

39 Despite the lack of clear empirical evidence for the second motive, it is worth investigating further. Börkey et al. 
(1998) illustrate that the potential benefit of self-regulation is provided by product differentiation, using an example 
of German “Blue Angel,’’ where most of products with this label are more expensive than non-labeled alternative 
goods. 
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game situation of one representative firm and regulator, Segerson and Miceli (1998) show that 

policymakers can induce firms to engage in a VA by a threat of mandatory controls (the “stick 

approach”) as well as by cost-sharing subsidies (the “carrot approach”). Recently, several articles 

have focused on the interaction among firms, rather than the interaction between one firm and 

the government under a regulatory threat. David (2005) considers an oligopolistic market to 

compare tax policy and VAa. Based on full or zero participation outcome, he finds that a VA 

may be more efficient than taxation in a concentrated industry if pollution is not too damaging 

and if cheap and efficient abatement technology is available. Dawson and Segerson (2008) 

develop a multiple-firm model of pollution abatement where an entire industry is faced with 

possible imposition of an emissions tax if the industry level target is not met. They use the 

concept of self-enforcing equilibrium to show the existence of equilibrium in which a VA is 

implemented successfully and to show free-riding behaviors (i.e., not joining in a VA) exist 

among firms under a successful VA. Similarly, Brau and Carraro (2011) examine the incentive 

of multiple firms to join in a VA by allowing free-riding behavior, where there are spill-over 

effects for participants, given a threat of nullifying the VA. McEvoy and Stranlund (2010) 

investigate consequences of costly enforcement on the ability of VAs in a setting very similar to 

that of Dawson and Segerson (2008).  

The studies on the motive of green consumers are as follows, where most of them focus 

on product differentiation without modeling a detailed VA structure. Based on the analyses of 

Gabszewicz and Thiesse (1979) and Shaked and Sutton (1982) regarding vertical product 

differentiation, Arora and Gangopadhyay (1995) study standard vertical product differentiation 

under duopoly where a firm’s environmental performance is differentiated. They show why 

some firms voluntarily overcomply with environmental regulation. Under their model, it is found 



www.manaraa.com

148 

 
 

that a minimum standard binding on the dirty firm has the effect of improving the performance 

of the greener firm. A subsidy obtains the same competitive outcome. The duopolistic vertical 

differentiation is also dealt with in Bansal and Gangopadhyay (2003), extending the model of 

Arora and Gangopadhyay (1995), and deriving additional implications that a policy of 

discriminatory subsidy improves welfare and alleviates total pollution. Given an exogenous 

division of green and brown consumers, Rodríguez-Ibeas (2007) shows that an increase in the 

proportion of green consumers is not always good for the environment. In a more general sense, 

García-Gallego and Georgantzís (2009) analyze the welfare effect of consumers’ social 

consciousness by varying the shape of preference distribution and the market structure. The 

effect of consumers’ awareness about products is also investigated by Brouhle and Khanna 

(2006) and Brécard (2013) under a model of duopolistic vertical differentiation. Bagnoli and 

Watts (2003), under a multiple-firm setting, study several vertical differentiation models where 

environmental friendliness is only partially internalized by consumers. They find that in some 

but not all cases unregulated competition for green consumers can provide the socially optimal 

level of the environmental public good.  

The previous work has dealt with either the motive of green consumers or the motive of 

threat policy, but not both together to explain the VA participation behavior. When it comes to 

the question about the performance of a VA, however, it is hard to pull apart those two motives. 

Clearly, firms have many ways to differentiate their products vertically in response to green 

consumers. First, firms can directly put certain labels on their products. According to the 

Ecolabel Index (http://www.ecolabelindex.com/, accessed April 2017), for example, there are 

465 ecolabels in 199 countries and 25 industry sectors, while 203 ecolabels exist in the United 

States alone. Through VAs, furthermore, firms can label their products officially. With the 
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Danish agreement on recycling of transport packaging, for example, public access to information 

is quite easy due to the well-developed 1970 Freedom of Information Act (European 

Environmental Agency [EEA] 1998, p. 107). In the United States, for example, EPA’s VAs, such 

as ENERGY STAR, WaterSense, and Design for the Environment (now, Safer Choice), have 

their own labeling policy. Direct listing of participants’ performance publicly as in the 33/50 

program also makes consumers aware of the performance of firms, causing product 

differentiation. To sum up, product differentiation is possible either by a firm’s own labeling or 

by joining in a VA. 

A regulatory threat—for example, a potential tax policy—is relevant when total 

emissions in an industry are considered high (even with the existing environmental friendliness 

for labeling). Given a binding threat, a VA can be initiated to further reduce aggregate emissions 

in the industry. To illustrate, the VA can take the form of an agreement between the regulator 

and a group of firms in a relevant industry with an explicit industry-wide target. Examples 

include the Netherland’s KWS 2000 project on reduction of volatile organic compounds 

(Lévêque and Nadaï 2000); the French agreement on the treatment of end-of-life vehicles 

(ELVs) (EEA 1998; Lévêque and Nadaï 2000); and the declaration by German industry and trade 

on global warming prevention (EEA 1998).  

All things taken together, the two motives—a regulatory threat and green consumers—

coexist for firms that are potential participants in a VA. In this regard, Baron (2011) analyzes a 

situation where multiple firms in a voluntary organization endogenously decide the “credence” 

attribute of their products in the presence of consumers valuing the credence and with social 

pressure from NGOs. It is found that the credence standard is lower with a larger size of 

organization but higher under social pressure. The model in Baron (2011) simply starts with a 
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fixed division of two groups, firms producing credence goods and firms producing basic goods. 

In addition, it is assumed that the former group is all in the voluntary organization from the 

beginning and the latter group is in a perfectly competitive market. In concluding, the author 

demands future research on several issues, including “the formation and governance of credence 

organization, including the participation decision of firms” (p. 1337). 

Admittedly, the sponsor who initiates a VA is not specified in this essay, whereas the 

threat of potential tax policy is coming from the regulator. In the United States, for example, 

VAs are sponsored by government, industries, and third parties. As analyzed by van’t Veld and 

Kotchen (2011), each sponsor might have different characteristics with respect to monitoring 

ability, capability of using a subsidy or tax, and incentives to control the size of membership. 

This paper ignores such differences by focusing on the sponsors’ goal to reduce industry-wide 

emissions through the VA. Note that one of the motivations for development of industry-

sponsored VAs is actually to avoid, affect, or delay regulation (Carmin et al., 2003). Therefore, 

whether the target can be met or unmet is the main issue even for the industry sponsor.40  

 

4.3   The Model 

We consider an industry that consists of N  identical firms, each of which produces one 

of two (differentiated) goods. We assume that N  is large enough to have no monopolistic 

equilibrium in terms of the industry. During the analysis, the integer issue in the number of firms 

is often ignored for the convenience. For an individual firm i , let iC  be its total costs and iE  be 

                                                 
40 According to Darnall et al. (2003)’s survey, among 61 VAs that responded from the initial sample of 105 VAs, 
there are 42 VAs sponsored by government, 9 VAs sponsored by industry, and 10 VAs sponsored by a third party. 
Ignoring a potential selection bias when receiving responses, government-sponsored VAs are the majority of 
currently operating VAs. 
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its total emissions when producing iq . Now, consider two possible technologies in production 

and abatement, namely “new” and “old” technologies. Let subscript n  and o  represent “new” 

and “old” technologies respectively, and as explained later, they also indicate “green” and 

“regular” goods (or firms). For firms using new technology, in n inC c q  and in n inE e q , while 

for firms using the old technology, io o ioC c q  and io o ioE e q , where nc  and oc  are the 

corresponding constant marginal production costs and ne  and oe  are the corresponding constant 

marginal emission rates with n oc c  and n oe e .41 The resulting industry-level emission is 

1
N
i iE E  . It is assumed that the product differentiation is possible only in terms of which 

technology is used in production. Practically, as mentioned in the Introduction, such product 

differentiation is possible through direct production labeling or indirect information sharing 

under VAs.  

Along with the production structure, the model incorporates the green preference of 

consumers who care about producers’ environmental performance. To be specific, given the 

firm’s ability to differentiate its products based on the technology, consumers are able to 

distinguish the version of products such as products made by firms using new technology and 

those made by firms using old technology. Thereby the former is considered as green good (or 

product made by green firms), while the latter is considered as regular good (or product made by 

                                                 
41 Bagnoli and Watts (2003) considered binary cost structure regarding two versions of products in two ways: i) 
different marginal costs with no fixed costs, and ii) same marginal costs with different fixed costs. The former is 

dealing with nc  for non-linked version of private good and c  for public good that is linked, where the marginal 

cost for producing private good that is linked with public good is nc c  which is greater than that of non-linked 

version, nc . The latter is assuming that the cost for producing non-linked version is n nc F  while it is 

n nc F F   for the linked version. In our model, the former is chosen. 
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regular firms). Taking into account green preferences, the only channel through which firms can 

demonstrate their environmental friendliness to green consumers is to use the new technology. 

Technically, a unit mass consumers, whose type is denoted by  , are uniformly 

distributed over [ , ], where 1   . The value of   represents the taste of individual 

consumer. Each consumer buys at most one unit of the product. Specifically, consumer’s utility 

function is written as ( ; )U m u y   , where m is the common income level, and 

if ,

if  and it is made by the new technology,

if  and it is made by the old technology;

0 0

( ; ) (1 ) 1

1

y

u y s y

y

 



  
 

 

where y  is the unit of consumer’s purchase; s (>0) captures the additional benefit for 

consuming a product made by new technology compared to old one. Under this setting, 

consumers who are willing to pay more for products by the old technology are willing to pay a 

higher premium when those are produced by the new technology.  

Based on the structure of supply and demand sides, we introduce Assumption 1. 

Assumption 1. (a) n os c c    and (b) (1 )n oc s c  . 

Assumption 1(a) means that at least for the consumer who has the highest willingness-to-pay for 

greenness, the additional benefit by purchasing the greener good exceeds the additional costs for 

a firm to produce it. Next, Assumption 1(b) implies that the normalized marginal production cost 

for giving one unit of utility for consumer   is higher for green good than regular one.         

Based on the foregoing structure, the game of interest can be described as follows. The 

baseline is the laissez faire situation (i.e., without any policy). The regulator may wish to reduce 

the industry-wide emissions up to a certain target by means of policy instruments such as a tax 
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policy or a VA. The emission level which is regarded as appropriate by the regulator can be used 

as an ex ante regulatory target for a VA policy, or as the basis for setting a tax policy.42 The 

regulator’s payoff consists of social welfare and a fixed political cost K ( 0 ) if a tax policy is 

implemented.43 The presence of the political cost decreases the merit of a tax policy for the 

regulator, thereby making VA (or laissez faire) more attractive. The basic structure of the 

extensive form game is depicted in Figure 4.1 in a somewhat very condensed way. For each 

payoff matrix, the first element pertains to the regulator and the second pertains to firms. 

The whole game consists of three main subgames for no policy (laissez faire), tax policy, 

and VA, respectively. We first consider the tax game where it corresponds to the subgame in 

which the regulator chooses “Tax policy” in Figure 4.1. Once the regulator decides to go for a 

tax policy, the following three-stage game is played. In Stage 1, the regulator chooses the tax rate 

t  ( 0 ) to meet the desired emission target TE . In Stage 2, firms decide which technology to 

use. In Stage 3, firms engage in quantity competition given the emission tax, where the aggregate 

emission level is determined accordingly with constant emission rates. We find Nash equilibrium 

for Stage 3 and in turn Stage 2. Especially for the quantity decision in Stage 3, we focus on 

symmetric outcomes such that all green firms choose a same level of outputs and all regular 

firms choose a same level of outputs respectively. This tax game is also a subgame for the 

                                                 
42 In reality, explicit industry-wide targets are embedded for some VAs, while some VAs do not have such targets 
(as well as individually assigned ones). Even for the VAs with no explicit targets, however, it can be said that the 
initiation of them is motivated to pre-empt the regulator’s threat policy which might be implemented if no further 
action is taken.  

43 Introducing a political cost for (tax) regulation is in the same vein as the assumption in for example, Segerson and 
Miceli (1998), who posit that the VA incurs smaller costs borne by the regulator. Fleckinger and Glachant (2011) 
also consider that adopting a new regulation is costing for the regulator in terms of spending administrative 
resources. We simply assume a fixed amount of such cost, which can give us enough intuition in our model. We do 
not consider uncertainty of threat policy, which is taken care of by a simple probability of passing the legislation in 
Segerson and Miceli,(1998), Lyon and Maxwell (2003), and Fleckinger and Glachant (2011).  
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following VA game and its equilibrium outcome is crucial because the severity of the potential 

emission tax is another motive for firms to join in a VA besides the green consumers. Note that if 

the regulator chooses the laissez faire option, this is equivalent to the case of zero tax rate in the 

tax game (and 0K  ). 

Next, suppose the regulator chooses to propose the VA with a regulatory threat, which is 

describes by the subgame in which the regulator chooses “VA” in Figure 4.1. We then consider 

following three-stage game. In Stage 1, the regulator chooses her regulatory emission target, VE . 

It is also announced that if the participants who adopt the new technology are gathered enough to 

achieve the target, the VA keeps going forward, otherwise a certain level of tax rate  ( 0 ) —a 

threat tax rate—will be imposed by the end of Stage 2. Thus, there is a possibility that the 

proposed VA will be cancelled in the middle of the process due to the expectation of its poor 

performance. In Stage 2, firms decide whether to join a VA. The participating firms in the VA 

only commits to use the new production technology that causes a higher marginal cost but a 

lower emission rate per product. The outcome of participation decision in Stage 2 determines the 

next stage. If there are not enough participants for the target, then the VA becomes ineffective 

and firms instantaneously face with the tax game based on the announced threat tax rate. If there 

are enough participants, the VA successfully proceeds to the next stage. In Stage 3, firms do 

quantity competition in the absence of emission tax and result in the target level of aggregate 

emissions. 

Note that in Stage 2 of the VA game we investigate two compelling settings in terms of 

the threat tax rate   (similar to the discussion in David 2005): pre-commitment case in which 

any   is credible by firms, and time-consistency case in which only credible threat level is the 
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one that the regulator would impose under the tax policy without any threatening purpose (i.e., 

t  ). These two cases provide implications about the credibility of the threat, which is crucial 

to successfully implement the VA.  

We consider Nash equilibrium for Stage 3 in the VA game. Note that the regulator’s 

decision regarding whether to implement the tax policy or not is made in Stage 2. Provided that 

the VA proceeds to Stage 3, therefore, firms get into quantity competition in the same manner of 

Stage 3 in the tax game, but with the exemption of the emission tax (or equivalently, with zero 

tax rate).44 We focus on symmetric equilibrium such that the quantity levels for green firms are 

same and those for regular firms are same respectively. Given the quantity decisions and 

corresponding industry-wide emissions in Stage 3, the regulator in Stage 2 can determine 

whether the number of participants are sufficient for the target. The potential implementation of 

the tax policy generates a threat for firms in terms of profit level they will end up with. But 

through the paper the term “threat” often refers to the tax rate (or the target emission level) 

which results in such profit level. For the participation decision in Stage 2, we figure out the self-

enforcing number of participants which is stable and profitable for all firms given the threat of 

tax policy. 

In our model the considered VA has a very simple form under which firms are required to 

use a new technology for participation. While not losing the consistent features with the real 

world examples (as explained in Introduction), such VA has its merits by making the motive for 

                                                 
44 In Dawson and Segerson (2008), the emission decision, which is separately considered from quantity decision, is 
made among firms as follows: non-participants (free-riders) choose their emission level without considering the 
target, and then participants divide the remaining binding target equally among them. Whereas, in this paper the 
quantity decision is equivalent to the emission decision with constant emission rates. Additionally, given that the 
VA only requires to use the new technology and that the potential threat policy is implementable in Stage 2, firms do 
quantity competition, not particularly concerning the emission target, so long as they arrive Stage 3.       
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participating in it equivalent to the motive for using the new technology which is resulting in 

product differentiation. Recall that this essay simultaneously considers two motives: green 

consumers and a regulatory threat. The first motive is embedded in that being a participant in the 

VA (and self-labeling without any VA) with the new technology is motivated by product 

differentiation based on green preference on the demand side. Additionally, given that the laissez 

faire industry-wide emission level is considered high, the VA with a binding threat can make 

more firms use the new technology, thereby having more participants. Thus the second motive is 

also included.   

 

4.4   Equilibrium 

4.4.1. Equilibrium under a tax policy 

We first explore the tax game. Let superscript T  represent equilibrium outcome under 

the tax policy. By backward induction, we find equilibrium output schedules for green and 

regular firms in Stage 3, and subsequently find an equilibrium number of green firms in Stage 2. 

When figuring out the equilibrium in Stage 3, the number of green firms nN  and the tax rate   

are treated as given from Stage 2 and from Stage 1, respectively. Furthermore, we need to 

specify the demand functions that two types of firms face with. Taking into account of the 

symmetry at equilibrium, let np  and op  represent the prices of products made by green firms with 

new technology and by regular firms with old technology respectively.  

The surplus of a consumer whose individual preference is   looks as follows: 

ns p    if she buys a green product or op   if she buys a regular product.  Then the 

preference of the consumer who is indifferent between purchasing a green product and a regular 
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product can be expressed by ( )n n op p s   , while o op   represents that of the consumer who 

is indifferent between purchasing a regular product and buying nothing. We consider the case of 

interior solutions where o n      .  

From the classification of consumers, demands for green and regular goods are obtained 

as follows.  

(1) ( , ) n o
n n o

p p
Q p p

s



  ; 

(2) ( , ) n o
o n o o

p p
Q p p p

s


  . 

Note that the market is uncovered as long as op  . The feature of uncovered market enables us 

to derive inverse demand functions as model imperfect competition à la Cournot. 

Considering the division of demand based on greenness of products, firms choose the 

technology and engage in output competition. Upon the total number of firms in the industry, N , 

denote the number of firms using the new technology by nN  and that of firms using the old 

technology by oN , where n oN N N  . After nN  is determined (and oN  is determined 

accordingly), each of two groups engages in Cournot type competition by choosing output level. 

From equations (1) and (2), inverse demand functions can be derived for np  and op  respectively 

as follows: ( , ) (1 ) (1 )n n o n op Q Q s s Q Q      and ( , )o n o n op Q Q Q Q   . 

Given an emission tax rate t , marginal costs are now n nc te  for green firms and 

o oc te  for regular firms. The profits for green firms and regular firms will be then 

( )n n n n np c te q     and ( )o o o o op c te q    . Dropping subscripts for individuality of firms by 
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focusing on symmetric outcomes, first order conditions for a green firm and a regular firm yield 

following equations: 

(3) 0 ( , ) (1 )n n o n n np Q Q c te s q     ;  

(4) 0 ( , )o n o o o op Q Q c te q    , 

where n n nQ N q  and o o oQ N q . Knowing that n oN N N  , we have following equilibrium 

quantities for individual green and regular firms for given number of green firms and tax rate: 

(5) 
 1 ( 1) ( 1)( ) ( )( )

( , )
(1 )( 1) ( )

n n n n n o oT
n n

n n

s N N N N c te N N c te
q N t

s N sN N N

         


   
; 

(6) 
(1 ) ( ) (1 )( 1)( )

( , )
(1 )( 1) ( )

T n n n n o o
o n

n n

s N c te s N c te
q N t

s N sN N N

      


   
. 

Consider the range of [0, ]nN N , now we have following feature for given nN  and 0t 

.  

Lemma 1. Under Assumption 1, equilibrium individual quantities are always positive.  

Proof. See Appendix C.1.  

The aggregate (market level) quantities are readily obtained as ( , ) ( , )T T
n n n n nQ N t N q N t  and 

( , ) ( ) ( , )T T
o n n o nQ N t N N q N t  , all positive by Lemma 1. Then the industry-wide emission level 

under tax policy is ( , )T
nE N t ( , ) ( , )T T

n n n o o ne Q N t e Q N t   for given nN  and t . Note that we have 

following feature for [0, ]nN N .   

Lemma 2. For fixed numbers of green and regular firms, the industry-wide emission 

level under tax policy decreases in tax rate. 

Proof.  See Appendix C.2.  
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The profits for green firms and regular firms under tax policy will be 

(7)  ( , ) ( , ), ( , ) ( , )T T T T T
n n n n n o n n n n nN t p q N t q N t c te q N t      ;  

(8)  ( , ) ( , ), ( , ) ( , )T T T T T
o n o n n o n o o o nN t p q N t q N t c te q N t      . 

Meanwhile, from equations (3) and (4), we get ( ) (1 )n n n nq p c te s     and 

o o o oq p c te   . Then, equations (7) and (8) can be alternatively expressed as equations (9) and 

(10). 

(9) 

2
( , )

( , )
1

T
n nT

n n

q N t
N t

s


  


; 

(10) 
2

( , ) ( , )T T
o n o nN t q N t     .  

Now, firm’s technology decision in Stage 2 can be discussed with the obtained 

equilibrium profits. First of all, under Assumption 1 ( , )T
n nq N t  and ( , )T

o nq N t  are strictly convex 

for all nN  (Appendix C.3), and so are ( , )T
n nN t  and ( , )T

o nN t , which are resulted from convex 

monotonic increasing transformations of ( , )T
n nq N t  and  ( , )T

o nq N t  as in equations (9) and (10).45 

Next, owing to the presence of multiple firms, Cournot competition feature maintains within 

each group of firms in a sense that an increase in the number of firms for one group reduces the 

relative merit of belonging to that group compared to belonging to the other group. Then there is 

                                                 
45 Suppose that ( )q   is strictly convex and that ( )f   is convex and monotonically increasing. Then for 1  and 2  

in the domain of ( )q   and [0,1] ,   1 2(1 )f q       1 2( ) (1 ) ( )f q q    

   1 2( ) (1 ) ( )f q f q      . Therefore, ( ( ))f q    is strictly convex.     
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at most one intersection between the two equilibrium profit schedules (ignoring the integer issue 

on the number of firms). First, we can think of two extreme cases which have no intersection: for 

given t , if ( , ) ( , )T T
n oN t N t  , every firm produces green goods of ( , )T

nq N t ; if 

(0 , ) (0 , )T T
n ot t  , every firm produces regular goods of (0 , )T

oq t . For the interior case (

( , ) ( , )T T
n oN t N t   and (0 , ) (0 , )T T

n ot t  ), the unique equilibrium number of green firms 

satisfies the following condition, as in Bagnoli and Watts (2003, p. 431): 

(11) ( , ) ( , )T T T T
n n o nN t N t  . 

This condition means there is no incentive for firms to deviate from their current technology 

decision.46 From equation (11), we can obtain the equilibrium number of green firms ( )T
nN t  

which is a function of the tax rate imposed in Stage 1. 

Remarkably, we can obtain closed-form solutions for the interior case outcome at the 

equilibrium of this game, which are functions of t  such as ( )T
nN t , ( ) ( ( ), )T T T

nq t q N t t  , 

( ) ( ( ), )T T T
nQ t Q N t t  , ( ) ( ( ), )T T T

nt N t t    and ( ) ( ( ), )T T T
nE t E N t t  for ,n o . First, we have 

expressions for aggregate quantities of green and regular goods in the demand side as equations 

(1) and (2), while Cournot competition yields expressions for aggregate quantities of green and 

regular goods in the supply side as above. In addition, equation (11) gives us an extra condition 

so that we can derive explicit solutions for equilibrium outcomes with exogenous parameters 

                                                 
46 Note that the equality in the condition is guaranteed by ignoring the integer issue in regards to the number of 
firms. The equilibrium condition, when considering the integer issue, is that i) no green firm has an incentive to be 

regular unilaterally, i.e., ( , ) ( 1, )T T T T
n n o nN t N t   , and ii) no regular firm has an incentive to be green 

unilaterally, i.e., ( , ) ( 1, )T T T T
o n n nN t N t   . 
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(see Appendix C.4 for the detailed derivation). As an example, the explicit expression for the 

equilibrium number of green firms looks as equation (12):  

(12) 
0.5 0.5

0.5 0.5

(1 ) (1 ) (1 )( ) (1 ) ( )
( )

1 (1 ) ( ) (1 ) 1 ( )

n n o oT
n

n n o o

s s sN N c te s N c te
N t

s s c te s c te



 

                
             

. 

With the obtained solutions, furthermore, comparative statics can be conducted as 

follows.  

Lemma 3. At the interior equilibrium in Stage 2 of the tax game, the following 

comparative statics hold: 

(1) the quantity of individual green firm decreases in tax rate;  

(2) the quantity of individual regular firm decreases in tax rate; 

(3) the profits of individual green firm decrease in tax rate; 

(4) the profits of individual regular firm decrease in tax rate; 

(5) the aggregate quantity of green firms increases in tax rate; 

(6) the aggregate quantity of regular firms decrease in tax rate; 

(7) the number of green (regular) firms increases (decreases) in tax rate; 

(8) the industry-wide emission level decreases in tax rate. 

Proof. See Appendix C.5. 

The above results make sense in that, for example, if a higher tax rate is levied, the 

industry-wide emission level will decrease at equilibrium with a larger number of green firms 

resulting in an increased aggregate level of green products. Importantly, Lemma 3 holds for tax 

rates that yield the interior solution for the Stage 2 equilibrium. Regarding boundary cases, we 

have Lemma 4.  
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Lemma 4. Given that all firms are regular ( 0T
nN  ) or given that all firms are green (

T
nN N ) in Stage 2 of the tax game, the individual quantity, individual profit, aggregate 

quantity and resulting industry-wide emission level of firms decrease in tax rate.  

Proof. We know that for 0T
nN  , (0 , ) / (1 ) 0T

o oq t t e N      , while for T
nN N , 

( , ) / [(1 )(1 )] 0T
n nq N t t e N s       . By monotonic transformations, the rest holds.  

By Lemmas 3 and 4 we can figure that for any level of emission target, which is smaller than the 

given laissez faire emission level, there will be a tax rate which achieves the target. We now 

define the full range of applicable tax rates as max[0 , ]t t , where max( , ) 0T
nq N t  , i.e., shutting 

down.  

In Stage 1 the regulator imposes a specific level of t . To achieve the target, she sets 

t t  that satisfies ( )T TE t E , where the social welfare is maximized. Based on one-to-one 

relationship implied by Lemma 3(8) and Lemma 4, one can always find out a tax rate that leads 

to the corresponding target. Actually, the set of feasible emission levels is [0, ]T LE E  where 

max( ) 0TE t   and (0)L TE E . We consider LE  as the baseline level of total emissions in the 

laissez faire case, and L
nN  ( (0)T

nN ) as the baseline number of green firms. 

The equilibrium in the tax game is summarized in Proposition 1.  

Proposition 1. At the equilibrium under tax policy, for the target [0, ]T LE E , 

(1) the regulator imposes tax rate as t t ;  

(2) the number of green firms and regular firms are, respectively,   
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having the target exactly met.  

 

4.4.2. Equilibrium under a voluntary agreement  

Next, we consider the VA subgame. Let superscript V  represent equilibrium outcome 

under the VA. The equilibrium is checked backward. In Stage 3, given the number of 

participants (i.e., the number of green firms), firms engage in Cournot competition. The output 

competition yields exactly same equilibrium quantities as in the tax game with zero tax rate. 

Interpreting alternatively, it would be the case of no regulatory policy, thereby resulting in pure 

product differentiation. Thus, we define equilibrium outputs, profits and aggregate emissions in 

Stage 3 as follows: ( )V
nq N  ( , 0)T

nq N t  , ( )V
nQ N  ( ,0)T

nQ N , ( )V
nN  ( ,0)T

nN  for 

,n o , and ( )V
nE N  ( ,0)T

nE N . Noted that unlike the tax policy those equilibrium outcomes 

under the VA are unchanged with different target levels, given the maintained absence of 

emission tax.  

Assume that the implementation of the VA is considered only when L
nN  is smaller than 

N . In other words, if all firms are already using the new technology in the laissez faire situation, 
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there is no reason to initiate the VA. Under Assumption 1, for the given equilibrium total 

emissions, we then have following Lemma.  

Lemma 5. Under the successfully implemented VA based on a threat policy and green 

consumers, the total emissions of the oligopolistic industry decrease in the number of 

participants (i.e., green firms) for [ , ]L
n nN N N .  

Proof. See Appendix C.6.  

Lemma 5 holds in that the increase in the total output of green goods leads to the 

reduction in total industry emissions. Such result is not obvious given the feature of Cournot 

competition that as the number of participants increases the number of non-participants decreases 

with a higher level of individual output. By Lemma 5, the target [ ( ), ]V LE E N E  can be met by 

increasing the number of participants [ , ]L
n nN N N . Under the VA, therefore, the number of 

participants—i.e., green firms—directly plays the key role for meeting the target emission level 

(while in the tax policy the tax rate determines the number of green firms and in turn the total 

emissions). Note that as the number of participants increases, the profits of a green firm start to 

be smaller than those of a regular firm due mainly to the Cournot feature. Thus increasing the 

number of participants reduces the relative merit of being a participant compared to being a non-

participant, and vice versa.  

In Stage 2, given the threatened tax rate  , the number of participants is determined. 

Suppose that the target emission level is feasible—meaning that it is achievable solely by 

increasing participants—and call nN
  as the minimum number of participants for the target under 

the VA. In Stage 2 the regulator lets the VA proceed when the target is going to be met, i.e., 



www.manaraa.com

165 

 
 

n nN N  . If n nN N  , however, the announced   is imposed. For the latter situation, there are 

two possible cases in terms of the outcome after Stage 2: (a) no participant ( 0nN  ) and (b) 

some but not enough participants (0 n nN N   ). We assume that participants who decided to 

adopt the new technology in Stage 2 of the VA game cannot reverse their technology choice in 

the following tax game, implying the agreement is not a cheap talk. After the VA is nullified, for 

case (a) firms face with the tax game outcome ( ( )T
n nN N  ). For case (b), profits for a green 

firm in case (b) are no better than those in case (a). The reason is as follows. In case (b), if 

( )T
n nN N  , firms who were non-participants change their technology to the new until 

( )T
n nN N  , having the same outcome as in case (a). If ( )T

n nN N  , firms who were 

nonparticipants stick to their old technology which allows higher profits for them but the lower 

for the green in the comparison to case (a). Assume that when expecting the same profits firms 

prefer not joining to joining in the going-to-be-nullified VA. Then there is no equilibrium such 

that firms less than minimum level participate by knowing the target is going to be unmet. As a 

results, possible equilibrium numbers of participants in Stage 2 lie in  0,[ , ]n nN N N  .  

Now we consider the self-enforcing equilibrium number of participants in Stage 2. 

Following the discussion in Dawson and Segerson (2008), two conditions should be satisfied: 

“profitability condition” and “stability condition.” For the first condition, it needs to be 

guaranteed that the participants enjoy a level of profits no less than that without the VA, hence, 

under the tax policy. The participating firms consist of two types: i) firms who would produce 

green good even under the tax policy, and ii) firms who would choose old technology if the VA 

were not initiated. If the profit level for green firms under tax policy is higher than that under the 
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VA, the number of firms in the second group becomes insufficient, resulting in the nullification 

of the VA. That the non-participants are always better off compared to the tax outcome makes 

the profit level of individual green firm pivotal for the VA to proceed to the end of the game, i.e., 

“successfully implemented.” We assume that the VA which is successful is preferred by firms to 

tax policy when both give same profits. Next, the number of participants is stable if there is no 

incentive to deviate unilaterally for each group of firms, i.e., no participants want to be a non-

participant and no non-participants want to be a participant.  

Depending on the threat level—i.e., profit level when the announced tax rate is 

imposed—the set of nN  that satisfies the profitability condition can be null or not. Figure 4.2 

describes the possible situations with different threats (but the same target), where bold line and 

dots indicate the relevant payoff for a green firm by taking the threatening profit level and 

possible values of nN  into account. First, in the panel (a), for     there is no nN , at which 

individual green firm is at least as well off as under the tax policy, within [ , ]nN N . In this case 

the VA will be nullified with no participants. In panel (b) we consider a severer threat based on 

( )     . Then there is a range of nN , from nN
  to nN  at which ( ) ( )V T

n n nN   , satisfying 

the profitability condition.  

Given the situation as the panel (b) in Figure 4.2, it remains to check the stability 

condition for the values within nN
  to nN  at which ( ) ( )V T

n n nN   . Note that only n nN N   

satisfies the stability condition in the sense that at n nN N  , i) no non-participant (regular firm) 

has an incentive to change their technology to sell green products (because that would cause a 

lower level of profits), and ii) no participant (green firm) has an incentive to convert current 
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technology to the old one (which would make the target unmet and thereby trigger the tax 

policy). For any number of greens firms greater than the minimum requirement, participants are 

still be able to enjoy a higher profit by becoming a non-participant, hence not stable. 

To summarize, the equilibrium number of participants is as follows. 

( ) ( )

0

V T
V n n n n
n

N N
N

    


 if

otherwise
 

where the positive V
nN  satisfies 

(13) ( )V V V
nE N E . 

By Lemma 5 we can obtain the unique positive ( )V V
nN E  that satisfies equation (13). To 

be specific, the nonlinear relationship between positive V
nN  and VE  is as follows: 

(14) 
(1 )1 1 1

( )
( ) 1

V n o V
n n n oV

n

c s cs s
N N s c c

s ss N N s

   
  

                   
, 

where   (1 ) / ( )n o n oe s e e e      and ( ) ( )V
n n s o nE e s e e c c        (See Appendix C.7 

for the derivation of equation (14)).  

 

4.4.2.1. Credible commitment case 

In Stage 1, the regulator proposes the target emission level together with the threat tax 

rate. Here we first consider the case in which the regulator has commitment power by assuming 

that the announced threat is credible during the game regardless of its value. Consider the lowest 

effective threat   that preserves the profitability and stability for the equilibrium number of 
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participants. Such threat would make both the VA and tax policy equally profitable for the green 

firm. 

(15) ( ( )) ( )V V V T
n n nN E   .  

Equation (15) describes the relationship between the target and the lowest effective threat 

under the VA. For given target any potential tax rate higher than or equal to   yields the same 

outcome by resulting in no higher threat profits than those under the VA (recall Lemma 3(3)). 

We simply assume that the regulator announces   as the potential tax rate in Stage 1. 

Now we need to look at the feasibility issue of the target across VA and tax policy. 

Directly from Lemma 2, if an emission target is attainable via the VA, it could be also met under 

the tax policy with an appropriate tax rate, but the converse does not necessarily hold. To obtain 

the feasible set, based on Lemma 5 we define min ( )V VE E N , the lower limit of total emissions 

under the VA. Same as in the tax game, the upper bound of total emissions is the case of laissez 

faire. Then the set of feasible emission targets under the VA is min[ , ]V LE E E . Figure 4.3 depicts 

the relationship of feasible sets under the laissez faire, VA and tax policy. Once we delimit the 

feasible target under the VA, we have Lemma 6 regarding the existence of  .  

Lemma 6. There is always a tax rate that makes the VA with a feasible target (

min[ , ]V LE E E ) strictly profitable for all firms than the tax outcome. 

Lemma 6 is followed by Lemmas 1 and 4. Specifically, under the VA for a feasible target 

the equilibrium profits for a green firm are always positive (by Lemma 1 and equation (9)), while 

under the tax policy we can find a tax rate that makes the profits equal to zero (by Lemma 4). 

Thus we can always find  . Now the equilibrium of the VA game based on pre-commitment 

can be summarized as follows.  
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Proposition 2. At the equilibrium under the VA with pre-commitment, 

(1) the regulator announces the target min[ , ]V V LE E E  with the threat tax rate   ; 

(2) the equilibrium number of participants is ( )V V
nN E (that of non-participants is 

( )V V
nN N E ), and the VA is successfully implemented; 

(3) participants sell green products of ( )V V
nQ E , while non-participants sell regular 

products of ( )V V
oQ E  by having the target exactly met ( ( )V V VE E E ). 

 

4.4.2.2. Time consistency case 

Here we assume that the only credible threat is the tax level that would be imposed under 

the tax policy, that is t  , while still pursuing VE . We have the same set of feasible target 

under the VA as in Figure 4.3 (feasible means the target can be met by increasing the number of 

participants), but with an additional issue of whether the VA is implementable or not (as shown 

in Figure 4.2). For example, if the credible threat is not sufficiently strong, the VA will be 

nullified with a short of participants, ending up with tax policy game. Thus we have Proposition 

3. 

Proposition 3. At the equilibrium under the VA with time consistency, 

(1) the regulator announces the target min[ , )V LE E E


 with the potential tax rate t  ; 

(2) the equilibrium number of participants is ( )V V
nN E (that of non-participants is 

( )V V
nN N E ), and the VA is successfully implemented, provided joining in the VA is 

profitable; otherwise the tax game outcome revisits; 
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(3) if VA is successful, participants sell green products of ( )V V
nQ E , while non-

participants sell regular products of ( )V V
oQ E  by having the target exactly met (

( )V V VE E E ). 

 

4.4.3   Equilibrium of the game 

For a given set of primitive parameter values, the regulator chooses one of the three 

policy options—laissez faire, VA, and tax policy—to maximize his objective function (i.e., the 

social welfare net of political cost). We sum up the equilibrium of the game in Proposition 4. 

When welfare levels are equal, assume that laissez faire, VA and tax policy are preferred in 

order.   

Proposition 4. There are three potential equilibria based on eleven possible situations for 

given welfare 
j

W  for j L (laissez faire), V (VA) and T  (tax policy) and political cost 

K : 

EQ 1. No policy is implemented (laissez faire situation) 

if (a) L V TW W W  , (b) L T VW W W  , (c) V L TW W W   with weak threat, (d) 

T L VW W W   with large K , or (e) V T LW W W   with weak threat and large K ; 

EQ 2. Tax policy is implemented  

if (a) T L VW W W   with small K , (b) T V LW W W   with small K , or (c) 

V T LW W W   with weak threat and small K ; 

EQ 3. VA is implemented  
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if (a) V L TW W W   with sufficient threat, (b) V T LW W W   with sufficient threat, 

or (c) T V LW W W   with large K ; 

where in the pre-commitment case the situations of EQ 1(c) and EQ 2(c) would not 

occur. 

 

4.5   Numerical Simulation and Welfare Analysis 

4.5.1   Illustration of equilibrium 

The foregoing has shown that, under certain conditions, two alternative instruments, tax 

policy and VA, are able to achieve the targeted emission level in the industry. Unfortunately, we 

are unable to provide analytical results to characterize equilibrium outcomes for the VA 

outcomes. Hence, we resort to numerical simulations to explore the equilibrium characteristics of 

the two instruments, including their impacts on social welfare.  

Consistent with our partial equilibrium framework, social welfare (W ) is defined as the 

sum of producer surplus ( PS ) and consumer surplus (CS ) net of the environmental externality (

EX ), whereas tax revenue ( R V ) is added to them for the case of a tax policy. Alternatively, W  

can be calculated by using equation (16) through considering entire demands net of production 

and social costs. Recall that the market is uncovered with two threshold values, ( ) /n n op p s    

for green goods and o op   for regular goods. Then,   

(16) (1 ) ( ) ( )
n

n o
n n o o n n o oW s d d c Q c Q x e Q e Q

 

 
           , 

where n nQ     and o n oQ    ; x  is marginal externality costs from one unit of emission.  
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In order to illustrate probable equilibrium outcomes including social welfare, specific 

values of parameters are chosen as in Table 4.1 by preserving internal coherence within the 

model. First of all,   is normalized to 1 and thereby 0  (to determine the degree of 

heterogeneity between consumers and ensure that the market is uncovered). oc  is set by 0.1 

which is appropriate for the Assumption 1. oe  is normalized by 1 so that producing one unit of 

regular good causes one unit of emission. For features of green goods, nc  is 20 % higher than oc  

and ne  is 20 % lower than oe , reflecting a situation that green goods are less cost-effective but 

more emission-effective. x  is chosen by 0.02 which is 20% of marginal cost of regular good. 

Note that the difference in production costs between green and regular good, n oc c , is 0.02. 

Then s  is chosen by 0.03 which is 1.5 time of the cost difference, thereby satisfying the 

Assumption 1.47 N  is set by 20 to represent an oligopolistic situation. Based on the assumed 

parameters and welfare function, we can obtain the following welfare-maximizing targets: TE

that maximizes the welfare under the tax policy and VE  that maximizes the welfare under the 

VA, where each maximum level is unique (as either interior or corner solution). For the time 

being, assume no political cost ( 0K  ).  

Table 4.2 describes the outcomes of all terminal nodes in Figure 4.1, based on the 

assumed parameters in Table 4.1, where only columns (1) to (3) can happen in equilibrium. For 

display purposes, the equilibrium number of green firms (or participants under the VA) are 

                                                 
47 When defining marginal social costs as n nc xe  and o oc xe , the difference n oc c  ( )n ox e e  is smaller 

than n oc c  given that n oe e  and 0x  . Therefore, under Assumption 1 the additional social costs of the 

green good is also covered by the consumer of highest willingness-to-pay. 
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rounded after obtaining all the results. First, the resulting industry-wide emissions are lowest 

under the VA. The social welfare is highest under the VA, followed by the tax policy and the 

Laissez faire case. In the case of pre-commitment, thus, VA is implementable based on the 

minimum feasible threat that makes the equilibrium profits for a green firm is same under the 

VA (column 3) and under the threat policy (column 4) (EQ 3(a) in Proposition 4). In the case of 

time consistency, however, the VA is not implementable because the threat is too weak to make 

the VA profitable (column 2). Then, if the political cost is insignificant (K <0.000018), the tax 

policy would be implemented (EQ 2(c) in Proposition 4); if large (K ≥0.000018), the laissez 

faire situation would occur (EQ 1(e)). 

Other features between tax policy (column 2) and VA (column 3) from Table 4.2 are as 

follows. In terms of TC , the VA is less efficient than the tax policy in maximizing welfare. This 

is because under the VA more firms are forced to use the new technology with a higher marginal 

cost. For CS  and PS , the VA generates more surplus than tax policy. Given the non-competitive 

situation (N =20), the main reason for the higher CS  is that there are more total outputs in the 

market under the VA than the tax policy. Relative to the tax policy, under the VA the segment of 

the covered market expands for green goods and in turn for total goods (recall that the market 

coverages for two goods are measured by n nQ     and o n oQ    , respectively). Also, the 

tax exemption under the VA makes PS  greater despite of the decrease in prices of both goods. 

Overall, even after taking R V  into account, SW  is higher under the VA than under the tax 

policy, provided the VA is successfully implemented. 
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4.5.2   Comparative analysis on welfare level 

Considering the results in Table 4.2 as a snapshot, further scrutiny is needed for a more 

general assessment of equilibrium characteristics. In this section we thus conduct comparative 

analysis. Especially to look at how the maximized welfare behaves, we plot the maximized 

welfare level when changing one parameter at a time (See Figure C1 in the Appendix C.8). We 

also plot the market output and price as well as consumer surplus with respect to changes in the 

additional benefit from purchasing a green good (s) (See Figures C2 in the Appendix C.8). For 

the comparative analysis, following ranges are considered: oc  [0.095, 0.105], nc  [0.115, 

0.125], oe  [0.95, 1.05], ne  [0.75, 0.85], s[0.02, 0.04],48 x[0.015, 0.025] and N  [5, 

150]. The range of N  is set to cover more competitive situations, while other ranges are set to 

have the assumed values in Table 4.1 in the middle.   is still fixed by 1, and K  is ignored 

which is irrelevant to welfare. Whenever changing a parameter, the welfare-maximizing target 

and tax rate are recalculated and applied for the outcomes.  

It turns out that for both VA and tax policy, the maximized welfare level decreases in oc , 

nc , oe , ne , and x .49 Also it is increasing in s , as expected. The comparative analysis shows that 

the VA, if it is successful, yields higher welfare than the tax policy with small N , while this is 

reversed as N  becomes large. The reason for this feature is as follows. For a given N , the 

exemption of the emission tax under the VA has two effects in general: i) in the absence of the 

                                                 
48 Based on the assumed ranges, the highest difference in social costs between green and regular goods is 0.0285, 
while the lowest is 0.0025. We set the lower bound of s  as 0.02, while setting the upper bound by 0.04 to have the 
mean as 0.03. This range brings in cases that s  is small to cover the gap of social costs between two goods as well 
as the opposite cases.  

49 Especially for x , we can obtain W x E     from equation (16), meaning that the welfare decreases in x  and 

the decrease becomes bigger when the total emissions are heavier. 
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tax burden, firms produce more outputs in total than the tax policy, yielding higher aggregate 

CS  and PS , and ii) the regulator loses a method to make up the social costs of externality (i.e., 

no tax revenue). When N  is small, the first effect overwhelms the second effect resulting in a 

higher social welfare under the VA. But as N  increases, the market becomes more competitive 

with more total output. Then the total externality becomes more important than the under-

production issue, thereby tax policy performs better in maximizing welfare.  

Given that the VA improves welfare partially by increasing overall consumer surplus (in 

a non-competitive situation), not all consumers always gain from it. Based on more of green 

firms, the welfare-maximizing VA results in more green goods and less regular goods than the 

welfare-maximizing tax policy. As a result, the total market can be either more covered or less 

covered (the former happens in the illustration of Table 4.2). As the consumer’s additional 

benefit (s) increases, however, the welfare-maximizing VA reduces the total output, while the 

tax policy increases it. As a result, when s is sufficiently large, the total market is less covered 

and the price of regular goods is higher under the VA than under the tax policy. This is mainly 

because when maximizing welfare for a higher s, the tax policy lowers the tax burden for all 

firms in the industry, while the VA directly increases the number of green firms, which exploits 

the increased willingness-to-pay, while letting free-riders (i.e., non-participants) enjoy the 

reduced competition with a higher price.  

 

4.5.3   Sensitivity analysis  

As a further step to elicit general implications, we conduct a sensitivity analysis which 

could give us an idea about which cases possibly occur at the equilibrium in the model and what 

instrument is implemented in order to enhance the social welfare. To do so, each parameter is 
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randomly drawn from a uniform distribution by 10,000 times. Keeping   as one, the 

aforementioned ranges of six parameters in the comparative analysis, oc , oe , nc , ne , s , and x , 

are considered where their mean values are the assumed values in Table 4.1. For N , we focused 

on the non-competitive situation by N  [5, 35], and additionally conduct the same set of 

simulations except for applying N  [75, 125] to cover more competitive situations. We assume 

the political cost is zero during the simulation ( 0K  ). To illustrate the procedure, for each 

simulation, s  is randomly drawn from uniformly distributed range [0.01, 0.05], oc  is drawn 

from [0.095, 0.105], and so on for remaining parameters. For each vector consisting of drawn 

values for seven parameters, we check whether the set of drawn values satisfies Assumption 1. If 

it does not, we consider the drawn vector as an invalid situation. Only for valid cases, we 

calculate the equilibrium outcomes including the social welfare. Then for each simulation we 

check which equilibrium occurs under what circumstance.  

Table 4.3 reports simulation results when N  [5, 35] and when N  [75, 125]. Out of 

100,000 simulations, 8,723 cases (10%) are sorted into invalid cases (which do not depend on the 

level of N , so the same number of invalid cases applies for both ranges of N ). For valid cases 

(90% of 10,000 cases), there are eight possible situations ending up with one of three possible 

equilibria. (Given that 0K  , EQ 1(d), EQ 1(e) and EQ 3(c) in Proposition 4 are excluded). We 

first look at the case of N  [5, 35]. In the pre-commitment case the VA is the only policy 

implemented because it yields highest welfare for all valid cases. Within them, for more than 

70% of cases the tax policy yields second highest welfare level (which is the case for the results 

of Table 4.2). But as long as it is implementable via a credible commitment, the VA will be 

chosen. Next, if the regulator’s commitment power disappears, thereby only the time-consistent 



www.manaraa.com

177 

 
 

threat level is effective, the VA becomes far from an implementable option: only 0.1% of valid 

cases end up with successful VAs. Instead, for three-fourths of valid cases the tax policy is 

implemented, and for a fourth no policy is implemented. Thus, even though the VA yields 

highest welfare in an oligopolistic situation, a strong threat is essential to actually implement it. 

When examining more competitive situations by N  [75, 125], the same feature is found. One 

difference is that there are more cases in which the tax policy yields highest welfare. As noted in 

the foregoing comparative analysis, this is mainly because in a more competitive market there 

would be more outputs produced (thereby the merit of the VA decreases) and in turn more 

emissions, which increases the need for correcting the externality (thereby the laissez faire 

becomes less desirable). 

In addition, we can think about the role of the political cost K . To be specific, for the 

cases of EQ 2(c), in which the tax policy is implemented due to the weak threat under the VA, 

the number will decrease as K  increases, yielding more cases with the laissez faire (i.e., the 

cases move from EQ 2(c) to EQ 1(e)). Then, actually the lowest welfare level among three 

possible outcomes is achieved. For the cases of EQ 2(b), in which the tax policy is implemented 

to achieve highest welfare, the number will decrease as K  increases and there will be more cases 

of the VA implemented if the threat is working (i.e., the cases move from EQ 2(b) to EQ 3(c)) or 

there will be more cases of the laissez faire if the treat under the VA is not sufficiently strong 

(i.e., the cases move from EQ 2(b) to EQ 1(d)). Then, for the pre-commitment case, the VA is 

going to be the second best option for the regulator who wants to avoid the political cost and has 

the power to commit. For the time-consistency case, on the other hand, it would be highly likely 

ending up with the laissez faire situation and thereby the industry face with the lowest welfare 

level among three options.      
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4.6   Conclusion 

This paper analyzes the incentives for firms to participate in a voluntary agreement in the 

presence of two compelling motives—green consumers and a potential regulatory threat. A 

voluntary agreement in this essay refers to an environmental agreement initiated to reduce 

industrywide emissions through the promotion of an environmentally friendly technology. For 

the sake of simplicity, technologies that firms can use are binary, such as old and new ones. A 

simple form of voluntary agreement is considered in the sense that being a member only requires 

using the new (greener) technology. In this setting, choosing the new technology enables firms to 

differentiate their products as well as to join in the voluntary agreement. Therefore, participation 

in a VA can be motivated in terms of appealing to green consumers and avoiding the potential 

tax policy. 

 Throughout the analysis, we find that a VA can improve welfare over the tax 

policy in a non-competitive market. This result buttresses the use of VAs in oligopolistic 

situations, where firms find that being a participant in a VA is another channel to appeal to 

consumers via product differentiation. But we also find that, because of free-riding behavior, the 

VA can hurt consumers who have lower willingness-to-pay for green products by leaving them 

to non-participants. Especially, when consumers’ common valuation for a green good rises, the 

VA, relative to the tax policy, generates more green firms, yielding a less competitive ground for 

free-riders. Hence, the entire market can be less covered under the VA, although such 

concentration still gives higher overall consumer surplus.  

Despite of the potential merits of VAs under certain circumstances, implementation 

issues remain, which directly connects to the question of whether the threat policy perceived 

along with the VA is credible and strong enough to encourage the participation. Not surprisingly, 
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it is found that, if the regulator’s commitment is credible regardless of its severity, the VA will 

be successful whenever it guarantees higher welfare than other policy options. If the regulator is 

required to be time-consistent, it is almost infeasible to induce enough participants because the 

threat is weak. Another perspective on the implementation issue—especially for the cases of 

weak threat—can be obtained from the existence of political costs of regulation, which would 

arguably be reduced under voluntary approaches. Given that welfare can be best enhanced under 

the tax policy, the regulator can prefer to implement a policy with smaller costs, which might 

lead to the VA.  
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Figure 4.1. The structure of the game 

 
 

  
(a) VA is not profitable   (b) VA is profitable for range of nN  

 
Figure 4.2. Relevant profits for an individual green firm under threats 

 
 

 
 

Figure 4.3. The set of feasible target under VA and under tax policy 
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Table 4.1. Selected Values for Parameters 

Parameter Description Value 

   Upper bound of uniformly distributed preference ( 1   ) 1.00 

 s  Additional benefit for consuming a green good 0.03 
 oc   Marginal cost per regular good 0.10 

 nc   Marginal cost per green good 0.12 

 oe   Marginal emission per regular good 1.00 

 ne  Marginal emission per green good 0.80 

 x   Marginal externality costs per unit of emission 0.02 

 E   Emission target VE or TE  

 N   Total number of firms in the industry 20 

Note: Given the parameters, V
minE =0.6740< VE =0.7650< TE =0.7854< LE =0.7945. 

 

Table 4.2. Representative Terminal Node Outcomes 

 
Laissez faire Tax policy VA success VA failure  

(threat is imposed) 
 (1) (2) (3) (4) 

nN  7 8 11 14 

nq  0.0424 0.0423 0.0406 0.0406 

oq   0.0431 0.0429 0.0453 0.0412 

nQ   0.3120 0.3387 0.4484 0.5982 

oQ   0.5450 0.5144 0.4062 0.2178 

Q  0.8569 0.8531 0.8547 0.8160 

np   0.1637 0.1667 0.1619 0.1961 

op   0.1431 0.1469 0.1453 0.1840 

n   0.0019 0.0018 0.0017 0.0017 

o  0.0019 0.0018 0.0021 0.0017 

E   0.7945 0.7854 0.7650 0.6963 
R V    0.0031  0.0298 

EX   0.0159 0.0157 0.0153 0.0139 
TC   0.0919 0.0921 0.0944 0.0936 
CS   0.3686 0.3656 0.3683 0.3383 
PS   0.0371 0.0368 0.0372 0.0340 
W   0.3898 0.3899 0.3901 0.3882 

Note: For tax policy t 0.0040, while the minimum effective threat for VA is   0.0428. 
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Table 4.3. Simulation Results (100,000 draws; 8,723 invalid cases violating Assumption 1) 

  N  [5, 35]  N  [75, 125]  

 
Implemented 
Policy 

Pre-
commitment 

Time 
consistency 

Pre-
commitment 

Time 
consistency 

EQ 1(a) Laissez faire - - - - 
EQ 1(b) Laissez faire  - - - - 
EQ 1(c) Laissez faire - 23,588 - - 
EQ 2(a) Tax policy - - - - 
EQ 2(b) Tax policy - - 55,200 55,200 
EQ 2(c) Tax policy - 68,013 - 36,479 
EQ 3(a) VA 23,588 - - - 
EQ 3(b) VA 68,139 126 36,527 48 
Total valid cases 91,227 91,227 91,227 91,227 

Note: Parameters are drawn from following ranges: 1  , s[0.02, 0.04], oc  [0.095, 0.105], oe 

[0.95, 1.05], nc  [0.115, 0.125], ne  [0.75, 0.85], x[0.015, 0.025]. K  is assumed to be zero. 
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APPENDIX C 

PROOFS AND SUPPLEMENTARY MATERIALS 

 

C.1   Proof of Lemma 1 

From Assumption 1, by knowing that n oe e , we have following conditions. For 0t  , 

(17) 
( ) ( )n n o oc te c te

s


  
 ; 

(18) (1 )( )n n o oc te s c te    . 

From equations (5) and (6), we know that ( , )T
n nq N t  and ( , )T

o nq N t  are all positive if following 

conditions hold, respectively: 

(19) 
( 1)( ) ( )( )

1 ( 1)
n n n n o o

n

N N c te N N c te

s N N


     


  
; 

(20) 
( ) (1 )( 1)( )

1
n n n n o oN c te s N c te

s


     



. 

If the right-hand-sides (RHS) of equations (19) and (20) are smaller than that of equation (17) for 

[0, ]nN N , then the individual quantities are positive for all nN  under Assumption 1.  

The RHS of equations (19) and (20) are decreasing in nN  because the derivatives of 

them, [ ( ) (1 )( )] [1 ( ) 1]n n o o nc te s c te s N N         and [ ( ) (1 )( )] (1 )n n o oc te s c te s      , 

are all negative for [0, ]nN N  by equation (18). Therefore, checking end points is enough to 

figure out whether one RHS is dominantly bigger than the other for [0, ]nN N  between 

equations (19) and (20). When 0nN  , the RHS of equations (19) and (20) are 

[( 1)( ) ( )] [1 ( 1)]n n o oN c te N c te s N       and o oc te . The former subtracted by the latter is 
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( 1)[( ) (1 )( )] [1 ( 1)]n n o oN c te s c te s N        which is positive by equation (18). When 

nN N , the RHS of equations (19) and (20) become ( ) / (1 )n nc te s   and 

[ ( ) (1 )( 1)( )] (1 )n n o oN c te s N c te s       . The former subtracted by the latter is 

( 1)[( ) (1 )( )] (1 )n n o oN c te s c te s       which is positive by equation (18). Therefore, the RHS 

of equation (19) is greater than that of equation (20) for all nN . Furthermore, the RHS of 

equation (19) subtracted by that of equation (17) is 

2[( ) (1 )( )] [ ( 1)]n n o o nc te s c te s s N N         which is negative for [0, ]nN N  by equation 

(18). Hence, the RHS of equation (17) is greater than that of equation (19) for all nN . As a 

result, under Assumption 1 equations (19) and (20) are satisfied, meaning that both individual 

quantities are all positive for all nN .   

     

C.2   Proof Lemma 2 

Under the assumption that n oe e  and 0s  , we have following partial derivative of 

( , )T
nE N t  with respect to t  for a given nN :    

( , ) ( , ) ( , )
( )

T T T
n n n o n

n n o n

E N t q N t q N t
e N e N N

t t t

  
  

  
  

[( 1) ( ) ] (1 )( 1)
( )

(1 )( 1) ( ) (1 )( 1) ( )
n n n o n n n o

n n o n
n n

N N e N N e N e s N e
e N e N N

s N sN N N s N sN N N

       
  

       

[( 1) ( 1) ] ( 1)
( )

(1 )( 1) ( ) (1 )( 1) ( )
n n n o n o n o

n n o n
n n

N N e N N e N e N e
e N e N N

s N sN N N s N sN N N

       
  

       
 

2( 1)( ) 1
( )

(1 )( 1) ( ) (1 )( 1) ( )
n n o

n n o n
n n

N N e e
e N e N N

s N sN N N s N sN N N

    
  

       
0 . 
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C.3   Convexity of Individual Quantities in nN  

The followings are first and second derivatives of ( , )T
n nq N t  and ( , )T

o nq N t  with respect to nN :  

(21)  ( ) ( ) ( , ) ( 2 )( , )

(1 )( 1) ( )

TT
n n o o n n nn n

n nn

s c te c te q N t s N Nq N t

s N sN N NN

         
   

;  

(22) 
 
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2 ( 2 ) 2 ( , )
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s N N sq N t

q N t N

s N sN N NN
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   
;   

(23)    ( ) (1 )( ) ( , ) ( 2 )( , )

(1 )( 1) ( )

TT
n n o o o n no n

n nn

c te s c te q N t s N Nq N t

s N sN N NN
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
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(24) 
 

2

2
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2 ( 2 ) 2 ( , )
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To n

n o nT
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n nn
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q N t N
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   
. 

As we know that ( ) ( )n n o os c te c te      and ( , ) 0T
n nq N t   under Assumption 1, 

equation (21) is definitely negative for [0, 2]nN N  keeping ( 2 )ns N N  positive, while its 

sign is ambiguous for [ 2, ]nN N N . Accordingly, equation (22) is definitely positive for 

[0, 2]nN N , while its sign is ambiguous for [ 2, ]nN N N . Similarly, knowing that 

(1 )( )n n o oc te s c te     and ( , ) 0T
o nq N t   under Assumption 1, equation (23) is definitely 

positive for [ 2, ]nN N N  keeping ( 2 )ns N N  negative, while its sign is ambiguous for 

[0, 2]nN N . Then, equation (24) is definitely positive for [ 2, ]nN N N , while the sign is 

ambiguous for [0, 2]nN N . To sum, based on equations (21) to (24), we cannot be sure about 
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whether the second derivatives of ( , )T
n nq N t  and ( , )T

o nq N t  are positive for [0, ]nN N . Thus, 

we further rearrange equations (22) and (24) to find comparable conditions regarding  .   

Note that the numerator in equation (22) can be expressed as follows: 

 ( , )
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where (1 )( 1) ( ) 0n ns N sN N N        and 2( 2 ) 0ns N N      for all nN . The 

condition for the numerator of equation (22) to be positive, thereby the whole equation to be 

positive, is: 

(25) 
 
 

 
 

( 1) ( 2 ) ( ) ( ) ( 2 ) ( )

1 ( 1) ( 2 ) 1 ( 1) ( 2 )
n n n n n n o o

n n n n

N N N N c te N N N N c te

s N N s N N s N N s N N

   


   
        

 
         

. 

For the convexity of the equilibrium quantity of a green firm, all we need to show is that 

equation (25) holds. Equation (25) describes that   is greater than the difference between 
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weighted production costs. It can be checked that the denominator of two weights 

(  1 ( 1) ( 2 )n ns N N s N N      ) is decreasing in nN  because its first derivative with 

respect to nN  is negative for all nN  (i.e.,  3 (1 ) 2( ) ( )( 2) 0n n ns s N N s N N N N          

for [0, ]nN N ). Since the denominator is positive when nN N  by (1 )(1 )s s N   , it is 

always positive for all nN . Note that the RHS of equation (25) subtracted by that of equation 

(17) is   [( ) (1 )( )] / [1 ( 1)] ( 2 )n n o o n nc te s c te s s N N s N N             which is negative. 

Therefore, under Assumption 1, the equilibrium quantity of green good in Stage 3 of the tax 

game is strictly convex in nN .   

Next, the numerator in equation (24) can be expressed as follows: 

 ( , )
2 ( 2 ) 2 ( , ) 0

T
o n T

n o n
n

q N t
s N N sq N t

N


   


 

   ( ) (1 )( ) ( , ) ( 2 )
2 ( 2 ) ( , )

T
n n o o o n n T

n o n

c te s c te q N t s N N
s N N q N t


      

    
  

 

 ( ) (1 )( ) ( 2 ) ( , )
2

T
n n o o n o nc te s c te N N q N t

s



     

   

 
2

2

( ) (1 )( ) (2 )
2

(1 ) ( ) (1 )( 1)( )
2

n n o o n

n n n n o o

c te s c te N N
s

s N c te c te
s

s N




 



    
  


      

 
   



 

   
2 2 2

(2 ) ( ) (1 ) (2 ) ( 1) ( )(1 )
2 n n n n n n o oN N N c te s N N N c tes
s

   
  

              
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where (1 )( 1) ( ) 0n ns N sN N N        and 2( 2 ) 0ns N N      for all nN . The 

condition for the numerator of equation (24) to be positive (thereby the whole equation to be 

positive) is:  

(26) 
( 2 ) ( 2 )1

( ) ( 1) ( )
1

n n
n n n n o o

N N N N
N c te N c te

s

 


 
                   

 

The equation (26) describes that   is greater than the difference between weighted production 

costs. The RHS of equation (26) subtracted by that of equation (17) is  

(27)    1
( 2 ) ( 1) ( ) (1 )( )

(1 ) n n n n o os N N N c te s c te
s s

  


       
 .   

The term of  ( 2 ) ( 1)n ns N N N       is decreasing in nN  because its first 

derivative is negative for all nN  (i.e., 3 [(1 ) 2 ( 2)] 0n n ns s N sN N       for [0, ]nN N ). 

When 0nN  , the term becomes (1 )[( ) (1 )( )]n n o os s c te s c te       which is negative, meaning 

that the term is negative for all nN . Then the whole term (27) is negative for all nN , which 

implies that under Assumption 1 the Stage 3 equilibrium quantity for a regular firm is strictly 

convex in nN .   

 

C.4   Solutions at Equilibrium under Tax policy 

We focus on the Stage 2 equilibrium, where all equilibrium outcomes are functions of the 

equilibrium number of green firm, determined in Stage 2, and the given tax rate. When 

expressing functions, we drop their arguments for the convenience. Additionally, let 

( )T T
n n n nz p c te    and ( )T T

o o o oz p c te   .  
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From the supply side, equations (3), (4), (9) and (10) can be expressed as  

( )

1 1

T T
n n nT n

n
p c te z

q
s s

 
 

 
;   ( )T T T

o o o o oq p c te z    ; 

2 2
( )

1 1

T T
n n n nT

n

p c te z

s s


        
 

;  
2 2

( )T T T
o o o o op c te z           .  

For aggregate quantities, we get equations (28) and (29) as follows: 

(28) 
1

T
T T T T n
n n n n

z
Q N q N

s
 


;  

(29) ( ) ( )T T T T T
o n o n oQ N N q N N z    . 

From the demand side, evaluating at equilibrium, equations (1) and (2) are expressed as 

T T T
n n oQ p p s    and T T T T

o n o oQ p p s p   . Rearranging terms gives the followings: 

(30) 
( ) ( )T T

T o n o o n n
n
s z z c te c te

Q
s

      
 ; 

(31) 
(1 ) (1 )( )T T

T n o n n o o
o

z s z c te s c te
Q

s

      
 . 

Additionally, from equation (11), we have 

(32) 0.5(1 )T T
n oz s z  . 

Combining equations (28) and (30) and combining equation (29) and (31) yield two equations 

where each is a function of T
nz , T

oz  and T
nN .  

(33) 
( ) ( )

1

T T T
T n o n o o n n
n
z s z z c te c te

N
s s

      



;  
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(34) 
(1 ) ( ) (1 )( )

( )
T T

T T n o n n o o
n o

z s z c te s c te
N N z

s

      
  .   

Utilizing equation (32) in addition to equations (33) and (34), we can figure out expressions for 

T
nz  and T

oz . Those expressions consist of only exogenous parameters and tax rate, thereby 

provide expressions for other variables as follows. 

(35) 

0.5 0.5

0.5

1 (1 ) ( ) (1 ) 1 ( )
( )

2(1 ) 2(1 )

n n o oT
n

s s c te s c te
q t

s s sN
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;  

(36) 
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;  
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s s sN
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. 
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C.5   Proof of Lemma 3 

L.2(1)  

0.5 0.5
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1 (1 ) (1 ) 1( )
0

2(1 ) 2(1 )

T
n on

s e s eq t

t s s sN

             
    

.  

( 0.51 (1 ) 0s    , 0.5(1 ) 1 0s   , and 0.52(1 ) 2(1 ) 0s s    .) 

L.2(2) 
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( 0.5(1 ) 1 0s   , 0.5(1 ) (1 ) 0s s    , and 0.52(1 ) 2(1 ) 0s s    ) 
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 
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L.2(7) 
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0 . 

 

C.6   Proof of Lemma 5 

The proof proceeds as follows. First, we show that for a given t  the Stage 3 equilibrium 

total quantity of green firms ( , )T
n nQ N t  is strictly increasing in nN  for [0, ]nN N . Next, we 

show that the total output in the industry ( , ) ( , )T T
n n o nQ N t Q N t  is strictly decreasing in nN  for 

[ ( ), ]T
n nN N t N , where ( )T

nN t  is the (interior) equilibrium number of green firms in Stage 2. 
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Note that when the total industry output is decreasing in nN , there will be less industry-wide 

emissions as nN  increases if the total quantity of green goods, produced at a smaller constant 

marginal emission rate than regular goods, is increasing. Hence, it is proved that for a given t  the 

industry-wide emission level is decreasing in nN  for [ ( ), ]T
n nN N t N . By definition, when 

applying 0t  , the same feature hold under the VA for [ , ]L
n nN N N , which is the range of 

interest in the VA game. 

The first derivative of the total green output with respect to nN  looks as follows.     

(37) 
2( ) ( ) ( , ) (1 )( 1)( , )

(1 )( 1) ( )

TT
n n o o n n n nn n

n nn

s c te c te N q N t s N sNQ N t

s N sN N NN

               
   

. 

For the strictly increasing total green output in nN , equation (37) should be positive. Using 

equation (5), we can express equation (37) as follows. 

(38)    
( 1) ( )

( ) ( )
1 ( 1) 1 ( 1)

n n n n
n n o o

n n n n

N N N N N N
c te c te

s N N sN s N N sN

   


   
       

                
 

where (1 )( 1) ( ) 0n ns N sN N N        and 2(1 )( 1) 0ns N sN       for all nN . 

The equation (38) describes that   is greater than the difference between weighted production 

costs. We can check that the derivative of the denominator of two weights with respect to nN  is 

negative (i.e., 2 (1 )[ 1] 0ns s N N     ). Then we can conclude that the denominator is positive 

for all nN  because the denominator is positive when nN N  (i.e., (1 )(1 ) 0s s N    ). In 

addition, the RHS of equation (38) subtracted by that of equation (25) is  

(39) 
 

     
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        

 .  
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For the denominator of term (39), we checked that the first square bracket is positive in the 

foregoing, and it is shown that the second bracket is positive in Appendix C.3, thereby the 

denominator is positive for all nN . Thus, the whole term (39) is negative, implying that the 

convexity of the individual quantity of green firms in nN  guarantees that equation (37) holds, 

which proves the total quantity of greens firms is strictly increasing in nN  for [0, ]nN N .  

 Next, the first derivative of total output in the industry is as follows. 

( , ) ( , ) ( , )T T T
n n o n o n

n n

Q N t Q N t p N t

N N

         
 

  [by equations (1) and (2)] 

( ( , ) )T
o n o o

n

q N t c te

N

     


  [by equation (4)]  

( , )T
o n

n

q N t

N


 


.  

Now showing that the total industry output strictly decreases in nN  is equivalent to showing 

above expression is negative or ( , )T
o n nq N t N  is positive. First, the value of ( , )T

o n nq N t N   

evaluated at nN N  is as follows. 

 ( ) (1 )( ) ( , )( , )

(1 )( 1)
n

TT
n n o o oo n

n N N

c te s c te q N t sNq N t

s NN 

    


 
. 

This derivative is positive by equation (18). Also, as shown in Appendix C.3, we know that 

( , )T
o nq N t  is strictly convex in nN . Hence, if it is checked that the first derivative of ( , )T

o nq N t  is 

positive at a certain value nN
 [0, )N , it is also positive for all nN  which is greater than nN


. In 
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this sense, we check the sign of the first derivative of ( , )T
o nq N t  at ( )T

nN t  which is defined by the 

intersection of the equilibrium quantities of green and regular firms in Stage 2 of the tax game.     

 
   

 ( )

( ) (1 )( ) ( ) 2 ( )( , )

(1 )( 1) ( ) ( )T
n n

T TT
n n o o o no n

T T
n n nN N t

c te s c te q t s N N tq N t

N s N sN t N N t

        
    

  

             
 

 

( ) ( )
( ) (1 )( ) ( )

( ) ( )

(1 )( 1) ( ) ( )

T T
T o n

n n o o o T T
o n

T T
n n

Q t Q t
c te s c te sq t

q t q t

s N sN t N N t

 
      

 
   

 

 
 
0.5 0.5( ) (1 )( ) (1 ) (1 ) ( ) ( )

(1 )( 1) ( ) ( )

T T
n n o o o n

T T
n n

c te s c te s s s Q t Q t

s N sN t N N t

         
   

 

 
0.5(1 ) [( ) ( )]

(1 )( 1) ( ) ( )

n n o o

T T
n n

s s c te c te

s N sN t N N t

      
   

 

0 .  [by equation (17)] 

Under Assumption 1, therefore, the first derivative of ( , )T
o nq N t  with respect to nN  is positive at 

( )T
n nN N t  (and we have shown the derivative is also positive at nN N ). Based on the 

convexity of ( , )T
o nq N t , this implies that ( , )T

o nq N t  strictly increases in nN  for [ ( ), ]T
n nN N t N , 

and in turn ( , ) ( , )T T
n n o nQ N t Q N t  strictly decreases in nN  for [ ( ), ]T

n nN N t N . As a result, 

given that ( , )T
n nQ N t  increases in nN  and given that n oe e , the total emission level, 

( , )T
nE N t  ( , ) ( , )T T

n n n o o ne Q N t e Q N t , strictly decreases in nN  for [ ( ), ]T
n nN N t N  and a given 

t . By applying 0t  , we prove that ( )V
nE N  strictly decreases in nN  for [ , ]L

n nN N N  in the 

VA game.  
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Strictly speaking, when showing the positive sign of  ( , )T
o n nq N t N   at ( )T

n nN N t , we 

utilize the notion of interior solution ( )T
nN t . Thereby the proof holds for 0L

nN   but it should be 

the case of an interior solution ( (0) (0)V V
n o  ). The proof simply extends to the boundary 

situation (e.g., 0L
nN   as (0) (0)V V

n o  ), since it is the case that the intersection is made in 

negative region of nN  so that the sign of ( , )T
o n nq N t N   is now positive for [0, ]nN N .      

 

C.7   Solutions at Equilibrium under VA 

In Stage 3 of the VA game, equilibrium schedules are obtained in a same way as Stage 3 in the 

tax game except that there no emission tax ( 0t  ). Dropping arguments for the convenience, let 

V V
n n nz p c   and V V

o o oz p c  . Then the counter parts of equations (33) and (34) in the VA 

game look as follows:  

(40) 
1

V V V
V n o n n o
n
z s z z c c

N
s s

    



; 

(41) (1 ) (1 )
( )

V V
V V n o n o
n o

z s z c s c
N N z

s

    
  . 

Additionally, from equation (13) we have following condition. 

0 V V
n n o oE e Q e Q      

 
V V V V
n o n o V

n o o
p p p p

E e e p
s s


    

          
   

 

(1 )n o V n o V
n n o

e e e s e
E e p p

s s


  
     

(1 )
( ) ( )n o V n o V

n n n o o
e e e s e

E e z c z c
s s


  

      . 
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Then we have following relationship between V
nz  and V

oz . 

(42) 
( )(1 )

( )
V

nV n o V
n o o n

n o n o

E e se s e
z z c c

e e e e

 
   

 
.  

Using equation (42), we can express equations (40) and (41) in terms of V
nN  and V

oz . After 

rearranging equation (41) for V
oz , we can find the expression of V

nN  as equation (14) by 

substituting equation (41) into equation (40). Once V
nN  is obtained, we can find V

nz  and V
oz , 

thereby all other equilibrium outcomes can be obtained but not as closed form solutions due to 

the nonlinearity.  
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C.8   Supplementary Figures 

 

  

 

 

Figure C1. Effects of parameter changes on maximized welfare 
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(a) Total green output   (b) Green good price 
 

  
(c) Total regular output  (d) Regular good price 

 
(e) Total output    (f) Consumer surplus 

 

Figure C2. Effects of changes in consumers’ additional benefit from a green good  
( s) on markets 
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CHAPTER 5  

CONCLUSIONS 

 

This dissertation analyzes agricultural and environmental policies that affect the market 

impacts and resulting welfare in relevant domains. In the first essay, the current and future 

impact of the U.S. renewable fuel standard (RFS) was analyzed via a multi-market competitive 

equilibrium model that reflects key features of the markets and RFS. Next, we estimate the U.S. 

corn and soybean dynamic supply responses, especially focusing on recent years under the RFS, 

to obtain implications regarding whether the United States is sufficiently responsive to the RFS-

induced demand shock on agricultural feedstocks. Lastly, we analyze the performance of 

voluntary agreements (VAs) relative to other market-based policy options, under an oligopoly 

market with consumers who care about the greenness of firms.       

The results of the first essay confirm that the current RFS program considerably benefits 

the agriculture sector, but also leads to overall welfare gains for the United States. Virtually all of 

these US welfare gains are due to the impact of RFS policies on the terms of trade. Furthermore, 

the most relevant effects are those associated with the RFS impacts on the price of key U.S. 

agricultural exports (corn and soybean products). Implementation of projected 2022 mandates, 

which would require further expansion of biodiesel production, would lead to a considerable 

welfare loss (relative to 2015 mandate levels). Constrained (second-best) optimal mandates 

would entail more corn-based ethanol and less biodiesel than currently mandated. 

The second analysis suggest that U.S. corn and soybean acreage response more in the 

short run than in the long run, and display the presence of significant cross-acreage dynamics. 

Cross-price elasticities of acreage responses between corn and soybeans are negative, as 
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expected, and fairly large in absolute value. This implies that when corn and soybean prices 

move together, the response of total acreage allocated to these two crops is extremely inelastic 

(0.04 for the short and long run). This suggest that the ability of the U.S. corn and soybean 

production sector to accommodate the demand shock due to the RFS is limited. 

Through the third essay, we find that when the market is non-competitive, the VA, 

relative to other policy options, improves welfare despite suffering from free-riding behavior. It 

is also found that as consumers value the green good more, the VA increases the number of 

green firms and provides a less competitive environment for free-riders, who increase the price 

of regular goods. As a result, the total market under the VA becomes less covered, at some point, 

than the tax policy. Regarding implementation, the potential gains from of the VA are attainable 

provided the regulator’s threat is credible and sufficiently strong. If the regulator is required to be 

time-consistent, it becomes infeasible to induce enough VA participants due to the weak threat.  

 

 

 


